Practice questions

1. Coins A and B have probability of flipping heads equal to 0.01 and 0.1 , respectively.
(a) What is the expected number of heads in 100 tosses for the two coins?

Solution: These are $\operatorname{Binomial}(100,0.01)$ and $\operatorname{Binomial}(100,0.1)$ random variables A and B, respectively. There expected values are $\mathrm{E}[A]=100 \cdot 0 \cdot 01=1$ and $\mathrm{E}[B]=100 \cdot 0.1=10$.
(b) For which one is there a higher chance of observing 5 heads in 100 tosses?

Solution: The probabilities are

$$
\mathrm{P}[A=5]=\binom{100}{5} 0.01^{5} 0.99^{95} \approx 0.003 \quad \text { and } \quad \mathrm{P}[B=5]=\binom{100}{5} 0.1^{5} 0.9^{95} \approx 0.034
$$

Even though A is closer to 5 than B in expectation, the probability of observing the outcome 5 is more than ten times smaller for coin A.
2. Let X and Y be the sum of 30 independent tosses of fair 3 -sided dice with face values $\{0,1,2\}$ and $\{1,2,3\}$, respectively.
(a) Calculate the means and variances of X and Y.

Solution: Let X_{1} and Y_{1} be the value of a single toss of the first and second die, respectively. The mean of X_{1} is $\mathrm{E}\left[X_{1}\right]=(0+1+2) / 3=1$ and $\operatorname{Var}\left[X_{1}\right]=\mathrm{E}\left[\left(X_{1}-1\right)^{2}\right]=$ $\left(1^{2}+0^{2}+1^{2}\right) / 3=2 / 3$. Since the p.m.f. of Y_{1} is the same as the p.m.f. of $X_{1}+1$, we get $\mathrm{E}\left[Y_{1}\right]=\mathrm{E}\left[X_{1}\right]+1=2$ and $\operatorname{Var}\left[Y_{1}\right]=\operatorname{Var}\left[X_{1}\right]=2 / 3$. By linearity of expectation, $\mathrm{E}[X]=30 \mathrm{E}\left[X_{1}\right]=30$ and $\mathrm{E}[Y]=30 \mathrm{E}\left[Y_{1}\right]=60$. As the tosses are independent we also get $\operatorname{Var}[X]=30 \operatorname{Var}\left[X_{1}\right]=20$ and $\operatorname{Var}[Y]=30 \operatorname{Var}\left[Y_{1}\right]=20$.
(b) Apply the Central Limit Theorem to estimate the values $\mathrm{P}(X \geq 45)$ and $\mathrm{P}(Y \geq 45)$.

Solution: Assuming 30 is sufficiently large, the c.d.f. of X can be approximated by the c.d.f. of a $\operatorname{Normal}(30, \sqrt{20})$ random variable, so

$$
\begin{aligned}
\mathrm{P}(X \geq 45) & \approx \mathrm{P}(\operatorname{Normal}(30, \sqrt{20}) \geq 45) \\
& =\mathrm{P}(\operatorname{Normal}(0,1) \geq(45-30) / \sqrt{20}) \\
& \approx \mathrm{P}(\operatorname{Normal}(0,1) \geq 3.354) \\
& \approx 0.0003
\end{aligned}
$$

Similarly, Y can be approximated by a $\operatorname{Normal}(60, \sqrt{20})$ random variable and $\mathrm{P}(Y \geq$ $45) \approx \mathrm{P}(\operatorname{Normal}(0,1) \geq-3.354) \approx 0.9996$.
(c) Use normal models for X and Y to estimate the ratio $\mathrm{P}(X=45) / \mathrm{P}(Y=45)$.

Solution: Let f and g be the p.d.f.s of a $\operatorname{Normal}(30, \sqrt{20})$ and a $\operatorname{Normal}(60, \sqrt{20})$ random variables, respectively. The estimate for the ratio is

$$
\frac{f(45)}{g(45)}=\frac{(2 \pi \cdot 20)^{-1 / 2} e^{-(30-45)^{2} / 2 \cdot 20}}{(2 \pi \cdot 20)^{-1 / 2} e^{-(60-45)^{2} / 2 \cdot 20}}=1
$$

As the p.m.f. of Y is the same as the p.m.f. of $X+30$ and both the p.m.f.s of X and Y are symmetric around their mean, $\mathrm{P}(X=45)=\mathrm{P}(X=15)=\mathrm{P}(X+30=45)=\mathrm{P}(Y=45)$ so the actual value of the ratio is 1 . The normal model estimate is perfectly accurate in this case.
3. A mystery coin is either fair (type 1) or 70% heads, 30% tails (type 2). Your prior belief is that the coin is of type 1 with probability 0.7 and type 2 with probability 0.3 . Calculate the posterior probabilities after observing
(a) a single head,

Solution: Let Θ denote the coin type. The prior probabilities are $\mathrm{P}(\Theta=1)=0.7$ and $\mathrm{P}(\Theta=2)=0.3$. Letting H be the event of observing a head, by Bayes' rule $\mathrm{P}(\Theta=1 \mid H) \propto \mathrm{P}(H \mid \Theta=1) \mathrm{P}(\Theta=1)=0.5 \cdot 0.7$ and $\mathrm{P}(\Theta=2 \mid H)=\mathrm{P}(H \mid \Theta=2) \mathrm{P}(\Theta=$ $2)=0.7 \cdot 0.3$. The posterior probabilities are

$$
\mathrm{P}(\Theta=1 \mid H)=\frac{0.5 \cdot 0.7}{0.5 \cdot 0.7+0.7 \cdot 0.3}=0.625
$$

and $\mathrm{P}(\Theta=2 \mid H)=1-\mathrm{P}(\Theta=1 \mid H)=0.375$.
(b) 7 heads in 10 flips.

Solution: Let N be the number of heads in 10 flips. Then $\mathrm{P}(N=7 \mid \Theta=1)=$ $\mathrm{P}(\operatorname{Binomial}(10,0.5)=7) \approx 0.117$ so

$$
\mathrm{P}(\Theta=1 \mid N=7) \propto \mathrm{P}(N=7 \mid \Theta=1) \mathrm{P}(\Theta=1) \approx 0.117 \cdot 0.7 \approx 0.082
$$

Similarly $\mathrm{P}(N=7 \mid \Theta=2)=\mathrm{P}(\operatorname{Binomial}(10,0.7)=7) \approx 0.267$ and $\mathrm{P}(\Theta=2 \mid N=7) \propto$ $0.267 \cdot 0.3 \approx 0.080$. The posteriors are

$$
\begin{aligned}
& \mathrm{P}(\Theta=1 \mid N=7) \approx \frac{0.082}{0.082+0.080} \approx 0.506 \text { and } \\
& \mathrm{P}(\Theta=2 \mid N=7)=1-\mathrm{P}(\Theta=1 \mid N=7) \approx 0.494
\end{aligned}
$$

4. Another mystery coin is fair (type 1), all heads (type 2), or all tails (type 3). Assume an equally likely prior on the three types. For any possible sequence of n outcomes derive a formula for the posterior probabilities.

Solution: Let Θ be the coin type and S be the sequence of outcomes. If S contains both heads and tails then $\mathrm{P}(\Theta=2 \mid S)=\mathrm{P}(\Theta=3 \mid S)=0$ so $\mathrm{P}(\Theta=1 \mid S)=1$. If S consists of n heads, then $\mathrm{P}(\Theta=3 \mid S)=0$ and

$$
\mathrm{P}(\Theta=2 \mid S) \propto \mathrm{P}(S \mid \Theta=2) \mathrm{P}(\Theta=2)=1 \cdot 1 / 3=1 / 3
$$

while

$$
\mathrm{P}(\Theta=1 \mid S) \propto \mathrm{P}(S \mid \Theta=1) \mathrm{P}(\Theta=1)=2^{-n} \cdot 1 / 3=2^{-n} / 3
$$

As the probabilities must add up to one we get that $\mathrm{P}(\Theta=2 \mid S)=1 /\left(1+2^{-n}\right)=2^{n} /\left(2^{n}+1\right)$ and $\mathrm{P}(\Theta=1 \mid S)=2^{-n} /\left(1+2^{-n}\right)=1 /\left(2^{n}+1\right)$. If S consists of n tails, by symmetry we get

$$
\mathrm{P}(\Theta=1 \mid S)=\frac{1}{2^{n}+1}, \quad \mathrm{P}(\Theta=2 \mid S)=0, \quad \mathrm{P}(\Theta=3 \mid S)=\frac{2^{n}}{2^{n}+1}
$$

