Practice questions

1. You flip a coin with unknown probability of heads Θ. Assume a $\operatorname{Uniform}(0,1)$ prior on Θ.
(a) You observe the outcome HTH after three flips. What is the posterior probability that the next flip will be a head?

Solution: The posterior Θ given two heads and a tail is a $\operatorname{Beta}(3,2)$ random variable with $\operatorname{PDF} f_{\Theta \mid X_{1} X_{2} X_{3}}(\theta \mid \mathrm{HTH})=12 \theta^{2}(1-\theta)$. The probability that the next toss is a head given $\Theta=\theta$ is $\mathrm{P}\left(X_{4}=\mathrm{H} \mid \Theta=\theta\right)=\theta$. By the total probability theorem

$$
\mathrm{P}\left(X_{4}=\mathrm{H}\right)=\int_{0}^{1} \mathrm{P}\left(X_{4}=\mathrm{H} \mid \Theta=\theta\right) f_{\Theta \mid X_{1} X_{2} X_{3}}(\theta \mid \mathrm{HTH}) d \theta=\int_{0}^{1} \theta \cdot 12 \theta^{2}(1-\theta) d \theta=\frac{3}{5} .
$$

(b) (Optional) More generally, you observe h heads and $t=n-h$ tails after n flips. What is the posterior probability that the next flip will be a head?
Solution: By the same reasoning, the posterior on Θ is $\operatorname{Beta}(h+1, t+1)$, and the probability that the next toss is a head given $\Theta=\theta$ is θ. The posterior probability that the next flip is a head is

$$
\begin{aligned}
\mathrm{P}\left(X_{4}=\mathrm{H}\right) & =\int_{0}^{1} \mathrm{P}\left(X_{n+1}=\mathrm{H} \mid \Theta=\theta\right) f_{\Theta \mid X_{1} \cdots X_{n}}(\theta \mid h \text { heads, } t \text { tails }) d \theta \\
& =\int_{0}^{1} \frac{1}{B(h+1, t+1)} \cdot \theta^{h}(1-\theta)^{t} \cdot \theta d \theta \\
& =\frac{B(h+2, t+1)}{B(h+1, t+1)} \cdot \int_{0}^{1} \frac{1}{B(h+2, t+1)} \cdot \theta^{h+1}(1-\theta)^{t} \cdot \theta d \theta \\
& =\frac{B(h+2, t+1)}{B(h+1, t+1)}
\end{aligned}
$$

The last equality is true because the integrand is the PDF of a $\operatorname{Beta}(h+2, t+1)$ random variable so the integral evaluates to one. Using the formula for the Beta function we get that

$$
\mathrm{P}\left(X_{4}=\mathrm{H}\right)=\frac{(h+1)!t!/(h+t+2)!}{h!t!/(h+t+1)!}=\frac{h+1}{h+t+2}=\frac{h+1}{n+2}
$$

2. Romeo has figured out that girls have a hidden parameter Θ that determines how late they tend to show up to dates. As usual his prior on Θ is $\operatorname{Uniform}(0,1)$.
(a) Assume that that likelihood $f_{X \mid \Theta}$ of Juliet being X hours late on a given date is Uniform $(0, \Theta)$. Calculate the probability that Juliet shows up at least 10 minutes late at her first date.
Solution: The lihelihood of X is $f_{X \mid \Theta}(x \mid \theta)=1 / \theta$ when $0 \leq x \leq \theta$ and zero otherwise. The conditional probability of the event $X \geq 1 / 6$ given $\Theta=\theta$ is

$$
\mathrm{P}(X \geq 1 / 6 \mid \Theta=\theta)=\int_{1 / 6}^{\infty} f_{X \mid \Theta}(x \mid \theta) d x=\int_{1 / 6}^{\theta} \frac{1}{\theta} d x= \begin{cases}(1 / \theta)(\theta-1 / 6), & \text { if } \theta \geq 1 / 6 \\ 0, & \text { otherwise }\end{cases}
$$

The total probability is

$$
\mathrm{P}(X \geq 1 / 6)=\int_{-\infty}^{\infty} \mathrm{P}(X \geq 1 / 6 \mid \Theta=\theta) f_{\Theta}(\theta) d \theta=\int_{1 / 6}^{1} \frac{1}{\theta}(\theta-1 / 6) \cdot 1 d \theta=\frac{5-\ln 6}{6}
$$

which is about 0.535 .
(b) Juliet shows up exactly 10 minutes late at her first date. What is the probability that she shows up at least 10 minutes late at her second date?

Solution: Let X^{\prime} be Juliet's arrival time at her second date. The likelihood of X^{\prime} is the same as the likelihood of X, but the PDF of Θ is now the posterior PDF after the first date, namely

$$
f_{\Theta \mid X}(\theta \mid 1 / 6) \propto f_{X \mid \Theta}(1 / 6 \mid \theta) f_{\Theta}(\theta)= \begin{cases}1 / \theta, & \text { if } 1 / 6 \leq \theta \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

The proportionality constant must be $1 / \int_{1 / 6}^{1}(1 / \theta) d \theta=1 / \ln 6$. The total probability is therefore

$$
\begin{aligned}
\mathrm{P}\left(X^{\prime} \geq 1 / 6 \mid X=1 / 6\right) & =\int_{-\infty}^{\infty} \mathrm{P}\left(X^{\prime} \geq 1 / 6 \mid \Theta=\theta\right) f_{\Theta \mid X}(\theta \mid 1 / 6) \\
& =\int_{1 / 6}^{1} \frac{1}{\theta}(\theta-1 / 6) \cdot \frac{1}{(\ln 6) \theta} d \theta \\
& =1-\frac{5}{6 \ln 6},
\end{aligned}
$$

which is about 0.535 . The probability didn't change up to third decimal (but it is not the same).
(c) Repeat parts (a) and (b) with an Exponential (Θ) likelihood.

Solution: For part (a) we would get that $\mathrm{P}(X \geq 1 / 6 \mid \Theta=\theta)=e^{-\theta / 6}$ for $\theta \geq 0$. As the prior remains the same, $\mathrm{P}(X \geq 1 / 6)=\int_{0}^{1} e^{-\theta / 6} d \theta=6\left(1-e^{-1 / 6}\right) \approx 0.921$. In Homework 2 the posterior PDF for Θ given $X=1 / 6$ was calculated to be $f_{\Theta \mid X}(\theta \mid 1 / 6) \approx 2.233 \theta e^{-\theta / 6}$ for $0 \leq \theta \leq 1$. Therefore the answer in part (b) changes to

$$
\mathrm{P}\left(X^{\prime} \geq 1 / 6 \mid X=1 / 6\right) \approx \int_{0}^{1} e^{-\theta / 6} \cdot 2.233 \theta e^{-\theta / 6} d \theta \approx 0.897
$$

The probability decreased by a little bit.
3. In a group of ten people, including Alice and Bob, each pair is friends with probability P, independently of the other pairs ${ }^{1}$
(a) Let A be the number of Alice's friends and B be the number of Bob's friends in the group. Conditioned on $P=p$, what kind of random variables are A and B ? Are they independent?

Solution: The PMF of A conditioned on P is:

$$
\mathrm{P}_{A \mid P}(A=a \mid P=p)=\binom{10-1}{a} p^{a}(1-p)^{10-1-a}
$$

Therefore A is a binomial random variable and so is B. However they are not independent conditioned on $P: \mathrm{P}_{A, B \mid P}(A=9, B=0 \mid P=p)=0$ (Alice is a friend of all other nine people, contradicting the fact that Bob has no friend) while $\mathrm{P}(A=9 \mid P=p) \cdot \mathrm{P}(B=$ $0 \mid P=p)>0$.

[^0](b) Now suppose P is unknown. Alice counts five friends in the group. What is her MAP estimate of P assuming a $\operatorname{Uniform}(0,1)$ prior?

Solution: P given $A=5$ is a $\operatorname{Beta}(5+1,4+1)$ random variable. The MAP estimate for such a random variable is $5 /(5+4)=5 / 9$.
(c) Bob, who is one of Alice's friends, tells her that he has only one other friend in the group. How does this information affect Alice's MAP estimate of P ?

Solution: Even though A and B are dependent, the random variable C that counts the total number of friendships that involve Alice or Bob is a $\operatorname{Binomial}(17, P)$ random variable, so P conditioned on $C=5+1=6$ is a $\operatorname{Beta}(6+1,11+1)$ random variable. The MAP estimate is $6 / 17$.
4. The ENGG2780A TAs want to estimate the hardness of the problem that they prepared for an upcoming homework. They know from experience that the time X (in minutes) it takes them to solve the problem is Exponential(1/15) if the problem is easy and Exponential(1/25) if the problem is hard (like this one). Based on previous quizzes, the prior probability that the problem is hard is 0.3 .
(a) Fanbin solves the problem in 20 minutes. According to the MAP rule, is the problem easy or hard? What is the probability of error?

Solution: Let Θ be the difficulty of the problem. The problem is difficult if $\Theta=1$, otherwise $\Theta=0$.

$$
\begin{aligned}
& \mathrm{P}(\Theta=1 \mid X=20) \propto f_{X \mid \Theta}(X=20 \mid \Theta=1) \mathrm{P}(\Theta=1)=\frac{1}{25} e^{-20 / 25} \cdot 0.3 \approx 0.00539 \\
& \mathrm{P}(\Theta=0 \mid X=20) \propto f_{X \mid \Theta}(X=20 \mid \Theta=0) \mathrm{P}(\Theta=0) \propto \frac{1}{15} e^{-20 / 15} \cdot 0.7 \approx 0.01230
\end{aligned}
$$

The MAP rule predicts that the problem is simple $(M A P=0)$. The probability of error is

$$
\mathrm{P}(M A P \neq \Theta \mid X=20)=\mathrm{P}(\Theta=1 \mid X=20) \approx \frac{0.00539}{0.00539+0.01230} \approx 0.305
$$

(b) The other five TAs try it out and their recorded solution times are $10,10,15,25$, and 35 minutes, respectively. How do the answers in part (a) change? [Adapted from Bertsekas-Tsitsiklis problem 8.2.6]

Solution: Let $X_{1}, X_{2}, \cdots, X_{5}$ be the solution time of the five TAs.

$$
\begin{aligned}
\mathrm{P}\left(\Theta=1 \mid X_{1}=20, X_{2}=10, \cdots, X_{6}=35\right) & \propto f_{X_{1} \mid \Theta}(20 \mid 1) \cdots P_{X_{6} \mid \Theta}(35 \mid 1) \mathrm{P}(\Theta=1) \\
& \propto \frac{1}{25^{6}} e^{-(20+10+10+15+25+35) / 25} \cdot 0.3 \\
& \approx 1.235 \cdot 10^{-11}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\mathrm{P}\left(\Theta=0 \mid X_{1}=20, X_{2}=10, \cdots, X_{6}=35\right) & \propto f_{X_{1} \mid \Theta}(20 \mid 0) \cdots P_{X_{6} \mid \Theta}(35 \mid 0) \mathrm{P}(\Theta=0) \\
& \propto \frac{1}{15^{6}} e^{-(20+10+10+15+25+35) / 15} \cdot 0.7 \\
& \approx 2.870 \cdot 10^{-11}
\end{aligned}
$$

Again the MAP rule predicts the problem is easy, and the probability of error is about $1.235 /(1.235+2.870) \approx 0.300$.

[^0]: ${ }^{1}$ This is the Erdős-Rényi random graph model

