Practice questions

1. The distance (in metres) of an archer's target from the bull's eye is a random variable with PDF $f(x)=\theta^{2} x e^{-\theta x}$ for $x \geq 0$, where the parameter $\theta \geq 0$ measures the archer's skill.
(a) Bob's first hit is 40 cm away from the bull's eye. What is the maximum likelihood estimate (MLE) of θ ?
Solution: The likelihood function is $f_{X_{1}}(\theta)=\mathrm{P}(0.4 \mid \theta)=0.4 \theta^{2} e^{-0.4 \theta} \propto \theta^{2} e^{-0.4 \theta}$. It is maximized when $d f_{X_{1}}(\theta) / d \theta=0$, namely when $2 \theta e^{-0.4 \theta}-0.4 \theta^{2} e^{-0.4 \theta}=0$. The only extremal point is $\theta=2 / 0.4=5$ and it is a maximum. The MLE is 5 .
(b) Bob's second hit is 20 cm away from the bull's eye. What is the new MLE of θ ?

Solution: The likelihood function is now

$$
f_{X_{1}, X_{2}}(0.4,0.2 \mid \theta)=0.4 \theta^{2} e^{-0.4 \theta} \cdot 0.2 \theta^{2} e^{-0.2 \theta} \propto \theta^{4} e^{-0.6 \theta}
$$

Its derivative is zero when $4 \theta^{3} e^{-0.6 \theta}-0.6 \theta^{4} e^{-0.6 \theta}=0$. The unique extremal point is $\theta=4 / 0.6=6.5$ and it is again a maximum. The new MLE is 6.5.
(c) Alice's two hits are 15 cm and 50 cm away from the bull's eye. Does the MLE predict that Alice is a more skilled archer than Bob?

Solution: In general, the likelihood for hits at distance x_{1} and x_{2} is $f_{X_{1}, X_{2}}\left(x_{1}, x_{2} \mid \theta\right)=$ $\theta^{4} x_{1} x_{2} e^{-\left(x_{1}+x_{2}\right) \theta}$, and its maximum occurs at $4 /\left(x_{1}+x_{2}\right)$. Thus the player with a smaller sum of distances from the bull's eye is the more skilled archer. As $0.15+0.5>0.4+0.2$ the MLE predicts that Bob is more skilled.
2. In Lecture 4 we showed that the maximum likelihood estimator for the mean λ of a Poisson (λ) random variable given that N occurrences are observed within a time unit is N.
(a) Now subdivide the time unit into 10 equal intervals and suppose that N_{i} occurrences are observed in the i-th interval. The N_{i} are then independent samples of a Poisson $(\lambda / 10)$ random variable. What is the maximum likelihood estimator for λ ?
Solution: The joint PMF of N_{1}, \ldots, N_{10} is

$$
\begin{aligned}
\mathrm{P}\left(N_{1}=x_{1}, \ldots, N_{10}=x_{10} \mid \lambda\right) & =e^{-\lambda / 10} \cdot \frac{(\lambda / 10)^{x_{1}}}{x_{1}!} \cdot e^{-\lambda / 10} \frac{(\lambda / 10)^{x_{2}}}{x_{2}!} \cdots e^{-\lambda / 10} \frac{(\lambda / 10)^{x_{10}}}{x_{10}!} \\
& \propto e^{-\lambda} \lambda^{x_{1}+\cdots+x_{10}} .
\end{aligned}
$$

The maximum likelihood estimator is a critical point of λ so it should occur either at 0 or where $(d / d \lambda) e^{-\lambda} \lambda^{x_{1}+\cdots+x_{10}}=0$. The only solution of this equation is $\lambda=x_{1}+\cdots+x_{10}$ and this is a maximum, therefore $M L E=N_{1}+\cdots+N_{10}$.
(b) Is the maximum likelihood estimator in part (a) biased or not?

Solution: $\mathrm{E}[M L E]=\mathrm{E}\left[N_{1}+\cdots+N_{10}\right]=\mathrm{E}\left[N_{1}\right]+\cdots+\mathrm{E}\left[N_{10}\right]=10(\lambda / 10)=\lambda$, so it is unbiased.
(c) (for ESTR) Can you come up with a sufficient statistic for n samples of a $\operatorname{Poisson}(\lambda)$ random variable?

Solution: Their sum $N=N_{1}+\cdots+N_{n}$ is a sufficient statistic. Given N, N_{i} can be taken as the number of samples that take values between $i-1$ and i among N independent samples of a $\operatorname{Uniform}(0, n)$ random variable. You then need to verify that N_{1}, \ldots, N_{n} are (unconditionally) independent $\operatorname{Poisson}(\lambda)$ random variables.
3. You have a coin that is either always heads $(\theta=1)$ or fair $(\theta=0)$.
(a) What is the maximum likelihood estimator for θ from n independent coin flips?

Solution: When $\theta=1$, the all-heads outcome has probability 1 and all others have probability zero. When $\theta=0$, all outcomes have probability 2^{-n}. Therefore the maximum likelihood estimate is 1 for an all-heads sequence and 0 for all other outcomes.
(b) What is the unbiased estimator for θ from one coin flip? (There is only one.)

Solution: Let h and t be the outputs of the estimator when observing a head and a tail, respectively. When a head is observed, the estimator must output 1 with probability one, so $h=1$. If it didn't, the estimator would be biased in the case $\theta=1$. Then the bias in case $\theta=0$ is $\frac{1}{2} h+\frac{1}{2} t$. For the estimator to be unbiased in this case also, t must equal -1 . Therefore the estimator should output 1 when observing a head and -1 when observing a tail.
(c) (Optional) Among all unbiased estimators for θ from n coin flips, which one has the smallest variance?

Solution: Let H be the event of observing n heads. By the same reasoning as in part (a), the estimator $\hat{\Theta}$ must output 1 conditioned on H. Therefore the estimator has zero-variance when $\theta=1$, i.e., $\operatorname{Var}_{1}[\hat{\Theta}]=0$.
When $\theta=0$, by the total expectation theorem, the bias is

$$
\mathrm{E}_{0}[\hat{\Theta}]=\mathrm{E}_{0}[\hat{\Theta} \mid H] \cdot 2^{-n}+\mathrm{E}_{0}\left[\hat{\Theta} \mid H^{c}\right] \cdot\left(1-2^{-n}\right)
$$

so if the bias is zero, we must have $\mathrm{E}_{0}\left[\hat{\Theta} \mid H^{c}\right]=-2^{-n} /\left(1-2^{-n}\right)$. The variance is

$$
\operatorname{Var}_{0}[\hat{\Theta}]=\mathrm{E}_{0}\left[\hat{\Theta}^{2}\right]=\mathrm{E}_{0}\left[\hat{\Theta}^{2} \mid H\right] \cdot 2^{-n}+\mathrm{E}_{0}\left[\hat{\Theta}^{2} \mid H^{c}\right] \cdot\left(1-2^{-n}\right)
$$

which is minimized when $\mathrm{E}_{0}\left[\hat{\Theta}^{2} \mid H^{c}\right]$ is. Since

$$
\mathrm{E}_{0}\left[\hat{\Theta}^{2} \mid H^{c}\right]=\operatorname{Var}_{0}\left[\hat{\Theta} \mid H^{c}\right]+\mathrm{E}_{0}\left[\hat{\Theta} \mid H^{c}\right]^{2}=\operatorname{Var}_{0}\left[\hat{\Theta} \mid H^{c}\right]+\frac{2^{-2 n}}{\left(1-2^{-n}\right)^{2}}
$$

the minimum is attained when $\operatorname{Var}_{0}\left[\hat{\Theta} \mid H^{c}\right]$ is zero, namely when $\hat{\Theta}$ takes the same value $-2^{-n} /\left(1-2^{-n}\right)$ on all sequences that have at least one tail. In conclusion, the desired estimator is

$$
\hat{\Theta}= \begin{cases}1, & \text { if all } n \text { flips are heads } \\ -2^{-n} /\left(1-2^{-n}\right), & \text { if there is at least one tail. }\end{cases}
$$

The indicator of the event H is in fact a sufficient statistic for θ.
4. You are given three samples of a $\mathrm{Zig}(\theta)$ random variable, which has PDF

$$
f(x)= \begin{cases}2(x-\theta), & \text { when } \theta \leq x \leq \theta+1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) What is the expected value μ of a $\operatorname{Zig}(\theta)$ random variable?

Solution: $\mu=\int_{\theta}^{\theta+1} 2(x-\theta) x d x=\theta+\frac{2}{3}$.
(b) Come up with an unbiased estimator for θ that depends only on the sample mean \bar{X}.

Solution: Since \bar{X} is an unbiased estimator for $\mu, \mathrm{E}_{\theta}[\bar{X}]=\theta+\frac{2}{3}$, so $\bar{X}-\frac{2}{3}$ is an unbiased estimator for θ.
(c) Repeat part (b) for the sample maximum MAX.

Solution: The CDF of MAX is
$\mathrm{P}(M A X \leq t \mid \theta)=P\left(X_{1} \leq t, X_{2} \leq t, X_{3} \leq t\right)=P\left(X_{i} \leq t\right)^{3}=\left(\int_{\theta}^{t} 2(x-\theta) d x\right)^{3}=(t-\theta)^{6}$
when $\theta \leq t \leq \theta+1$. The PDF is $f_{M A X}(t)=6(t-\theta)^{5}$ and the expected value is

$$
\mathrm{E}_{\theta}[M A X]=\int_{\theta}^{\theta+1} t \cdot 6(t-\theta)^{5} d t=\int_{0}^{1}(\theta+t) \cdot 6 t^{5} d t=\theta+\frac{6}{7}
$$

Therefore $M A X-\frac{6}{7}$ is an unbiased estimator of θ.
(d) (Optional) What are the variances of your estimators in (b) and (c)? (Hint: Argue that the variance should not depend on θ and assume $\theta=0$ in the calculation.)

Solution: The shifted samples $X_{1}-\theta, X_{2}-\theta, X_{3}-\theta$ are $\operatorname{Zig}(0)$ random variables with sample mean $\bar{X}-\theta$ and sample maximum $M A X-\theta$. Since shifting by a constant does not change the variance, i.e.

$$
\begin{aligned}
\operatorname{Var}_{\theta}\left[\bar{X}-\frac{2}{3}\right] & =\operatorname{Var}_{0}\left[\bar{X}-\theta-\frac{2}{3}\right]=\operatorname{Var}_{0}[\bar{X}] \\
\operatorname{Var}_{\theta}\left[M A X-\frac{6}{7}\right] & =\operatorname{Var}_{0}\left[M A X-\theta-\frac{6}{7}\right]=\operatorname{Var}_{0}[M A X],
\end{aligned}
$$

we may assume $\theta=0$ and ignore the constant shift when calculating the sample variances.

$$
\operatorname{Var}(\bar{X})=\frac{1}{3} \operatorname{Var}(X)=\frac{1}{3}\left(E\left[X^{2}\right]-E[X]^{2}\right)=\frac{1}{54}
$$

because $\mathrm{E}[X]=\mu=\frac{2}{3}$ and $\mathrm{E}\left[X^{2}\right]=\int_{0}^{1} x^{2} \cdot 2 x d x=\frac{1}{2}$. As for the sample max,

$$
\operatorname{Var}[M A X]=\mathrm{E}\left[M A X^{2}\right]-\mathrm{E}[M A X]^{2}=\int_{0}^{1} t^{2} \cdot 6 t^{5} d t-\left(\frac{6}{7}\right)^{2}=\frac{3}{4}-\left(\frac{6}{7}\right)^{2}=\frac{3}{196}
$$

so the part (c) estimator has lower variance.

