Practice questions

1. The measurements of ten random athlete heights in centimeters are

$$
152,163,188,201,192,176,194,166,215,184 .
$$

(a) Assuming the heights are independent normal random variables with known standard deviation $\sigma=20$, give a 95% confidence interval for the mean height.

Solution: The (symmetric) 95% confidence interval for the mean height of normal samples with known standard deviation σ is $\left[\bar{X}-z \frac{\sigma}{\sqrt{n}}, \bar{X}+z \frac{\sigma}{\sqrt{n}}\right]$, where z is chosen so that $\mathrm{P}(-z \leq \operatorname{Normal}(0,1) \leq z)=95 \%$. The latter condition holds for $z=1.96$. We calculate

$$
\bar{X}=\frac{152+163+188+201+192+176+194+166+215+184}{10}=183.1
$$

to obtain the confidence interval [170.7, 195.5].
(b) How many samples do you need for a 95% confidence interval of width 5 cm ?

Solution: The width of the confidence interval is $\frac{2 \sigma}{\sqrt{n}} \cdot z$, so to ensure width at most w, n should be $(2 \sigma z / w)^{2}$. When $w=5$ and $z=1.96,(2 \sigma z / w)^{2},(2 \sigma z / w)^{2}=245.8624$, so $n=246$ samples are sufficient.
2. A large company conducts a job satisfaction survey among its 6250 employees. Out of 250 employees that are sampled (with repetition), 142 are satisfied with their jobs.
(a) Calculate a 99% confidence interval for the number of employees that are satisfied with their job.

Solution: We first come up with a confidence interval for the fraction of satistfied employees p given $n=250 \operatorname{Indicator}(p)$ (also known as $\operatorname{Bernoulli}(p)$) independent samples. The sample mean is

$$
\bar{X}=\frac{142}{250}=0.568
$$

The "traditional" formula based on the normal approximation of a sum of indicator samples gives the 99% confidence interval $[A-z B, A+z B]$ for p, where $z=2.576$ is the 99 percentile two-sided threshold for the $\operatorname{Normal}(0,1)$ random variable, and

$$
A=\frac{\bar{X}+z^{2} / 2 n}{1+z^{2} / n} \approx 0.567, \quad B=\frac{\sqrt{\bar{X}(1-\bar{X}) / n+z^{2} / 4 n^{2}}}{1+z^{2} / n} \approx 0.031
$$

The 99%-confidence interval for p is $[A-z B, A+z B] \approx[0.487,0.646]$. The $99 \%-$ confidence interval for the number $6250 p$ of satisfied employees is [3041, 4036].
The "simplified" formula gives the 99%-confidence interval

$$
[\bar{X}-z \sqrt{\bar{X}(1-\bar{X}) / n}, \bar{X}+z \sqrt{\bar{X}(1-\bar{X}) / n}] \approx[0.487,0.648]
$$

for p and the corresponding interval $[3045,4054]$ for $6250 p$.
(b) Find a confidence interval of width 100 for the number of satisfied employees and estimate the confidence level for it.
Solution: If we use the "simplified" formula, the width is $w=N \cdot 2 z \sqrt{\bar{X}(1-\bar{X}) / n}$, where $N=6250$ is the total number of employees. If we set $w=100$, for $\bar{X}=0.568$ and $n=250$ we get

$$
z=\frac{w \sqrt{n}}{2 N \sqrt{\bar{X}(1-\bar{X})}} \approx 0.255
$$

which gives a confidence level of $\mathrm{P}(-z \leq \operatorname{Normal}(0,1) \leq z) \approx 0.201$, or only about 20% for the interval $[N \bar{X}-50, N \bar{X}+50]=[3500,3600]$.
3. The midterm test scores of six random students are $81,84,83,73,76,83$.
(a) What is the sample variance?

Solution: The sample mean is $\bar{X}=\frac{81+84+83+73+76+83}{6}=80$, so the sample variance is $V=\frac{(81-80)^{2}+(84-80)^{2}+(83-80)^{2}+(73-80)^{2}+(76-80)^{2}+(83-80)^{2}}{6}=\frac{50}{3}$.
(b) Assuming their scores are independent $\operatorname{Normal}(\mu, \sigma)$ random variables. Give as large a value for $\hat{\Theta}_{-}$as you can so that $\left(\hat{\Theta}_{-}, 10\right)$ is a 95% confidence interval for σ.
Solution: The adjusted sample variance is $S^{2}=50 \cdot 6 /(6-1)=20$. The confidence interval formula for the standard deviation of a normal random variable is $\left(\sqrt{(n-1) S^{2} / z_{+}}, \sqrt{(n-1) S^{2} / z_{-}}\right)$, where z_{-}and z_{+}should be chosen so that

$$
\mathrm{P}\left(z_{-} \leq \chi^{2}(n-1) \leq z_{+}\right)=0.95
$$

For the right bound to equal 10 we should choose $z_{-}=1$. As $\mathrm{P}\left(\chi^{2}(n-1)<z_{-}\right) \approx 0.03743$ we are looking for z_{+}with $\mathrm{P}\left(\chi^{2}(n-1) \leq z_{+}\right) \approx 0.95+0.03743 \approx 0.98743$, which gives $z_{+} \approx 14.53$ and $\hat{\Theta}_{-}=\sqrt{(n-1) S^{2} / z_{+}} \approx 2.6234$.
4. A food processing company packages honey in glass jars. The volume of honey in millilitre in a random jar is a $\operatorname{Normal}(\mu, \sigma)$ random variable. 5 random jars are picked and the volume of honey inside them in millilitre are 108, 101, 103, 109 and 104.
(a) Suppose μ is unknown and σ is known to be 5 . Give a 95% confidence interval for μ.

Solution: The sample mean is $\bar{X}=\frac{108+101+103+109+104}{5}=105$, so the confidence interval is $(\bar{X}-z \sigma / \sqrt{n}, \bar{X}+z \sigma / \sqrt{n}) \approx(100.62,109.38)$, where $z \approx 1.96$ is chosen so that $\mathrm{P}(-z \leq \operatorname{Normal}(0,1) \leq z)=95 \%$.
(b) Suppose μ and σ are both unknown. Give a 95% confidence interval for μ.

Solution: The adjusted sample variance is:

$$
S^{2}=\frac{(108-105)^{2}+(101-105)^{2}+(103-105)^{2}+(109-105)^{2}+(104-105)^{2}}{5-1}=\frac{23}{2}
$$

The confidence interval is now of the form $(\bar{X}-z S / \sqrt{n}, \bar{X}+z S / \sqrt{n})$, where z is chosen so that $\mathrm{P}(-z \leq t(4) \leq z)=95 \%$, which gives $z \approx 2.78$ and the confidence interval (100.78, 109.22).
(c) Suppose μ and σ are both unknown. Give a 95% prediction interval for the next sample.

Solution: The prediction interval is of the form $(\bar{X}-z S \sqrt{1+1 / n}, \bar{X}+z S \sqrt{1+1 / n})$ with the same z as in part (b), giving the answer (94.67, 115.33).

