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Abstract

We survey the average-case complexity of problems in NP.
We discuss various notions of good-on-average algorithms, and

present completeness results due to Impagliazzo and Levin. Such com-
pleteness results establish the fact that if a certain specific (but some-
what artificial) NP problem is easy-on-average with respect to the uni-
form distribution, then all problems in NP are easy-on-average with
respect to all samplable distributions. Applying the theory to natu-
ral distributional problems remain an outstanding open question. We
review some natural distributional problems whose average-case com-
plexity is of particular interest and that do not yet fit into this theory.

A major open question is whether the existence of hard-on-average
problems in NP can be based on the P �= NP assumption or on related
worst-case assumptions. We review negative results showing that cer-
tain proof techniques cannot prove such a result. While the relation
between worst-case and average-case complexity for general NP prob-
lems remains open, there has been progress in understanding the rela-
tion between different “degrees” of average-case complexity. We discuss
some of these “hardness amplification” results.



1
Introduction

The study of the average-case complexity of intractable problems began
in the 1970s motivated by two distinct applications: the development of
the foundations of cryptography and the search for methods to “cope”
with the intractability of NP-hard problems.

All definitions of security for cryptographic problems require that
any efficient algorithm that tries to “break” the protocol “succeeds”
only with a very small probability. The formalizations of breaking and
succeeding depend on the specific application, but it has been known
since the 1980s that there is a unifying concept: no cryptographic task
(e.g., electronic signature or data encryption) is possible unless one-way
functions exist.1 Informally, a one-way function is an efficiently com-
putable function f : {0,1}∗ → {0,1}∗ that maps {0,1}n to {0,1}n and
such that, if we are given f(x) for a random x ∈ {0,1}n, it is intractable
(in time polynomial in n) to find a pre-image x′ such that f(x′) = f(x).
In particular, the existence of one-way functions implies that there is
a search problem in NP (given y ∈ {0,1}n, find x ∈ {0,1}n such that
f(x) = y) that is intractable to solve on random inputs sampled from

1 The realizability of many cryptographic tasks, in fact, is equivalent to the assumption that
one-way functions exist.
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a simple distribution (the distribution f(x), where x is chosen ran-
domly from {0,1}n). The fact that all of cryptography is predicated
on the existence of average-case intractable problems in NP is a main
motivation for the study of the theory we describe in this study.

In particular, a long-standing open question is whether it is possible
to base the existence of one-way functions on the P �= NP assumption,
or related ones (such as NP-complete problems not allowing polynomial
size circuits).

The second motivation for the study of the average-case complex-
ity of problems in NP comes from the analysis of heuristic algorithms.
Unless P = NP, we cannot hope for efficient algorithms that solve NP-
complete problems exactly on all inputs. We may hope, however, for
algorithms that are “typically efficient” on inputs sampled from distri-
butions that occur in practice. In order to understand the limitations
of such an approach, it would be desirable to have an “average-case
analog” of the theory of NP-completeness. Such a theory would enable
us to prove that for certain problems, with respect to certain distribu-
tions, it is impossible to have algorithms that perform well on “typical”
inputs, unless an entire class of presumably intractable problems can
be efficiently solved.

The basic foundations of such a theory have been laid out. Sur-
prisingly, subtle difficulties arise even when just developing the analogs
of trivial elements of the theory of NP-completeness, such as the def-
initions of computational problem, efficient algorithm, reduction, and
completeness, and the equivalent complexity of decision versus search
for NP-complete problems. In this study we will discuss these difficul-
ties and show how they were resolved. We will see a number of results,
insights, and proof techniques the usefulness of which goes beyond the
study of average-case complexity.

The right techniques to apply such a theory to natural problems and
distributions have not been discovered yet. From this point of view, the
current state of the theory of average-case complexity in NP is simi-
lar to the state of the theory of inapproximability of NP optimization
problems before the PCP Theorem.

Finding ways of applying this theory to natural problems is another
outstanding open question in this area.
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1.1 Roadmap

In this section we give an overview of the content of this survey.

1.1.1 Definitions of tractability

The first difficulty in developing a theory of average-case intractability
is to come up with a formal definition of what it means for a prob-
lem to be “intractable on average” or, equivalently, what it means to
be “average-case tractable.” A natural definition would be to consider
an algorithm efficient-on-average if it runs in expected polynomial time.
Such a definition has various shortcomings (related to the fact that it
is too restrictive). For example, if an algorithm A runs in time t(x),
and its simulation B (in a different model of computation) runs in
time t2(x), it is natural that we would like our definition to be such
that A is efficient-on-average if and only if B is. Suppose, however,
that our inputs come from the uniform distribution, and that A runs
in time n2 on all inputs of length n, except on one input on which
A takes time 2n. Then the expected running time of A is polynomial
but the expected running time of B is exponential. Looking at the
median running time of an algorithm gives us a more robust measure
of complexity, but still a very unsatisfactory one: if an algorithm runs
in polynomial time on 70% of the inputs, and in exponential time on
30% of the inputs, it seems absurd to consider it an efficient-on-average
algorithm. The right way to capture the notion of “efficient on typical
instances” should be that it is fine for an algorithm to take a large
amount of time on certain inputs, provided that such inputs do not
occur with high probability: that is, inputs requiring larger and larger
running times should have proportionally smaller and smaller proba-
bility. This is the idea of Levin’s definition of average-case complexity.
In (an equivalent formulation of) Levin’s definition [53], an algorithm
is polynomial-time-on-average if there is a constant c > 0 such that the
probability, over inputs of length n, that the algorithm takes more than
time T is at most poly(n)/T c. As is usual with complexity theory, vari-
ous choices can be made in the definition: we may look at deterministic
algorithms, randomized algorithms, or non-uniform families of circuits.
An additional choice is whether we require our algorithm to always be
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correct, but possibly run in superpolynomial time on some inputs, ver-
sus requiring the algorithm to always run in polynomial time, but to
give an incorrect answer to some inputs. This will lead to several possi-
ble definitions, each meaningful in some applications. (See Chapter 2.)
The important thing will be that almost all the results we discuss in
this study are based on reductions that preserve tractability under all
of these definitions. Hence, the treatment of completeness, reductions,
families of distributions, and decision versus search is independent of
the specific notion of tractability that one is interested in.

1.1.2 Reductions between distributional problems

Let L be a decision problem and D be a distribution over inputs2;
we call the pair (L,D) a distributional problem. All the definitions of
average-case tractability have a characteristic in common: an algorithm
A is efficient for (L,D) if a certain set of “bad” inputs has low proba-
bility under D. (The bad inputs could be the ones where the algorithm
A takes a very long time, or those on which A outputs an incorrect
answer.) This motivates the following definition of reduction [53]: we
say that (L,D) reduces to (L′,D′) if there is a polynomial time com-
putable function f such that x ∈ L if and only if f(x) ∈ L′ and, in
addition, for every input y, the probability of generating y by pick-
ing x at random according to D and then computing f(x) is at most
poly(|x|) larger than the probability of sampling y at random from D′.3

The motivation for this definition is the following. Suppose that A′ is
a good algorithm for (L′,D′), so that the set B′ of inputs that are bad
for A′ has a small probability according to D′. Consider the following
algorithm for (L,D): on input x, output A′(f(x)). Now, the bad inputs
for this algorithm are the inputs x such that f(x) ∈ B′. The probability
of sampling such an x, according to D, however, is upper bounded by
poly(|x|) times the probability of sampling an element of B′ according
to D′, which we had assumed to be small. Hence, we have a good algo-
rithm for (L,D), and the definition of reduction preserves average-case
tractability. Note that, in this argument, we used nothing about the

2 Additional difficulties arise in defining how to specify D.
3 When the second condition holds, we say that D′ dominates D.
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definition of tractability except the notion of “bad” input. (See also
Chapter 3.)

1.1.3 A completeness result

Having given the definition of computational problem and of reduction,
we will present a completeness result [53]. We consider the bounded
halting problem BH, where on input (M,x,1t) we have to determine
whether the non-deterministic Turing machine M accepts input x

within t steps. This problem is readily seen to be NP-complete. We
show that for every distributional problem (L,D), where L is in NP
and D is a polynomial-time computable distribution there is a reduc-
tion from (L,D) to (BH,UBH), where UBH is a reasonable formalization
of the notion of a “uniformly chosen” random input for BH. Informally,
the reduction maps an input x into the triple (M ′,C(x),1t), where C

is a (carefully chosen) injective polynomial-time computable encoding
function; M ′ is a non-deterministic machine that first recovers x from
C(x) and then simulates the non-deterministic polynomial time Turing
machine that decides whether x ∈ L (recall that L is in NP); and t is
a polynomial upper bound to the running time of M ′. The main claim
in the analysis of the reduction is that, for x selected from D, C(x) is
“approximately” uniformly distributed. Technically, we show that the
distribution of C(x) is dominated by the uniform distribution. This
will follow from a choice of C as an information-theoretically optimal
compression scheme.

The completeness result implies that if (BH,UBH) has a good-on-
average algorithm (according to one of the possible definitions), then
all problems (L,D), where L is in NP and D is polynomial-time com-
putable, also have good-on-average algorithms.

The proof uses the fact that all polynomial-time computable dis-
tributions D allow polynomial-time computable optimal compression
schemes. Many natural distributions are polynomial-time computable,
but there are a number of important exceptions. The output of a
pseudorandom generator, for example, defines a distribution that is
not optimally compressible in polynomial time and, hence, is not
polynomial-time computable.
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1.1.4 Decision versus search

The second result that we present, due to Ben-David et al. [12], shows
that if (BH,UBH) has a good-on-average algorithm, then for all NP rela-
tions R and all polynomial-time computable distributions D, there is an
efficient algorithm that, given x sampled from D, almost always finds a
y such that R(x,y), provided that such a y exists. This shows that the
question of whether there are intractable-on-average search problems
in NP (with respect to polynomial-time computable distributions) is
equivalent to the question of whether there are intractable-on-average
decision problems in NP (with respect to such distributions). Both
questions are equivalent to the specific decision problem (BH,UBH)
being intractable.

1.1.5 Computable, samplable, and arbitrary distributions

The restriction of the completeness result to samplable distributions is
quite undesirable because it rules out reasonably natural distributions
that can occur in certain applications. Ideally, it would be desirable that
the theory put no restriction whatsoever on the distributions, and that
we could prove results of the form “if there is a good-on-average algo-
rithm for (BH,UBH), then for every L in NP and every distribution D
there is a good-on-average algorithm for (L,D).” The conclusion, how-
ever, is equivalent to P = NP.4 More specifically, there is a distribution
D such that, for every language L in NP, if there is a good-on-average
algorithm for (L,D) then there is an efficient worst-case algorithm for
L. As we discuss below, there are difficulties in relating the worst-
case complexity to the average-case complexity of all problems in NP,
and so it seems unlikely that the theory can be generalized to han-
dle completely arbitrary distributions. An important intermediate case
between polynomial-time computable distributions and arbitrary dis-
tributions is the class of polynomial-time samplable distributions. This
class includes some natural distributions that are not polynomial-time
computable (e.g., the output of a pseudorandom generator), and an

4 This was first proved by Levin. In Section 2.5 we present a later proof by Li and Vitányi
[55].
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argument can be made that any distribution that occurs “in nature”
should be samplable. Impagliazzo and Levin [42] show that the com-
pleteness result can be extended to all samplable distributions. That is,
if (BH,UBH) admits a good-on-average algorithm, then for every prob-
lem L in NP and every samplable distribution D, the problem (L,D)
has a good-on-average algorithm. In Sections 5.1 and 5.2, we present
two proofs of this result. A simpler one, appearing in the article of
Impagliazzo and Levin, which applies only to some (but not all) defini-
tions of “good-on-average,” and a second proof, also due to Impagliazzo
and Levin, but unpublished, that is more complex but that applies to
all definitions. The first proof is similar to the proof of the complete-
ness result for polynomial-time computable distributions, but using a
randomized encoding scheme. An input x for L is mapped into an input
(M ′,(r,C(r,x)),1t) for BH, where r is randomly chosen. The desired
properties of the randomized encoding C are (i) over the choices of r,
the encoding x → (r,C(x,r)) is “approximately injective,” and (ii) the
distribution (r,C(x,r)) is “approximately uniform” when r is uniformly
chosen and x is sampled from D. Some additional difficulties arise: in
order to compute the randomized encoding one needs some extra infor-
mation about x, and the reduction just “guesses” all possible values
for this extra information, and, for technical reasons, this forces us to
work with the search rather than the decision version of L. This is done
without loss of generality given the reduction of Ben-David et al. [12].
The idea for the second proof is that, if S is the sampling algorithm for
L, and L is hard-on-average over the outputs of S, then the problem
“on input r, is it true that S(r) ∈ L?” should be hard-on-average with
respect to the uniform distribution. This intuition is quite difficult to
translate into a proof, especially in the case in which the computation
of the sampler S is a one-way function.

1.1.6 Worst case versus average case

In order to unify the theory of average-case complexity with the rest of
complexity theory, it would be highly desirable to prove a theorem of
the form, “if P �= NP then there is a hard-on-average problem (L,D),
where L is in NP and D is samplable.” In order to prove such a result
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via a reduction, we would need to find an oracle algorithm R (the
reduction) such that if A is a good-on-average algorithm for (L,D),
then RA is a worst-case efficient algorithm for, say, 3SAT. Feigenbaum
and Fortnow [27] show that (under standard assumptions) such a result
cannot be proved via a non-adaptive random reduction, that is, via an
algorithm R that makes non-adaptive queries and such that each query
has the distribution D (regardless of the input of R). Bogdanov and
Trevisan [15] show that the same impossibility result holds even if R is
allowed to make arbitrary non-adaptive queries, provided that R works
for arbitrary oracles. It remains possible that a worst-case-to-average-
case reduction in NP exists which makes adaptive access to the oracle,
or that uses the code of the algorithm A (and, hence, does not work for
arbitrary oracles). Guttfreund and Ta-Shma [37] make some progress
in the latter direction. An even more ambitious goal is to show, via
reductions, that “if P �= NP then one-way functions exist.” The result
of Bogdanov and Trevisan rules out the possibility of proving such a
result via oracle non-adaptive reductions; Akavia et al. [9] present a
simpler proof in the setting of one-way functions (which, unlike the
Bogdanov-Trevisan proof, works also in the uniform setting) and are
also able, for a restricted class of one-way functions, to rule out non-
adaptive reductions.

1.1.7 Degrees of average-case intractability

If a problem L is worst-case intractable, then every efficient algo-
rithm makes an infinite number of mistakes; if a problem (L,D) is
average-case intractable, then every efficient algorithm makes mis-
takes5 on a set of inputs that has noticeably large probability accord-
ing to D. Given the difficulties in relating these two settings, it is
interesting to ask what happens if we consider different quantita-
tive formulations of “noticeably large.” O’Donnell [61] shows that any
quantification between 1/2 − 1/n.33 and 1/poly(n) leads essentially to
an equivalent intractability assumption. O’Donnell’s argument, pre-
sented in Chapter 6, gives a far-reaching generalization of Yao’s XOR
Lemma [76].

5 Or fails, depending on the definition of average-case tractability that we are using.
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1.1.8 Specific problems

Eventually, we would like the theory to talk about the complexity of
specific natural problems with specific natural distributions. It follows
from Cook’s reduction that if there is a hard-on-average problem (L,D),
where L is in NP and D is samplable, then every NP-hard problem is
hard on average with respect to some samplable distribution, albeit
a very unnatural one. On the other hand, Levin’s completeness result
shows (under the same assumption) that there are hard-on-average
problems (L,D), where D is uniform, but L is quite artificial. Yet,
the theory of average-case completeness has little to say about specific
cases of interest where both L and D are natural: for instance, the
hardness of 3SAT or maximum independent set with respect to natural
distributions on inputs.

A specific problem whose average-case behavior has been widely
investigated is random kSAT with respect to the following distribution
of instances: Choose at random mk(n) out of the 2k

(
n
k

)
possible clauses

of kSAT independently. The tractability of this problem appears to
depend heavily on the number of clauses mk(n). While it is believed
that random kSAT is hard for certain choices of mk(n), no hardness
result supporting this intuition is known. However, Feige [23] shows the
following surprising connection between hardness of random 3SAT and
hardness of approximation: Assuming that random 3SAT is hard for
certain values of m3(n), it is worst-case hard to approximate certain
problems in NP (e.g., maximum bipartite clique within n−ε for some
ε > 0.)

For certain lattice problems we know an equivalence between worst-
case and average-case complexity [5, 57, 59, 64]. If such equivalences
could be proved for NP-complete lattice problems, we would have a
positive solution to the question of whether the existence of hard-on-
average problems in NP can be based on the worst-case hardness of
NP-complete problems.

1.2 A historical overview

In this section we review the historical progression toward the results
described in the previous section.
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1.2.1 One-way functions and cryptography

The average-case performance of algorithms on random inputs has been
studied since the beginning of the modern theory of efficient algorithms
in the 1950s and 1960s. Such work was often focused on problems for
which worst-case polynomial-time algorithms were also known. The
third volume of The art of computer programming [49] (published in
1973) extensively surveys average-case analyses of algorithms for prob-
lems such as sorting and median finding.

The study of the average case of (conjectured) intractable problems
began in the 1970s motivated by the development of the foundations of
cryptography and by interest in heuristic approaches to NP-complete
problems.

When Diffie and Hellman [20] introduced the notion of public key
cryptography, they speculated that one could base a trapdoor permu-
tation on the difficulty of an NP-complete problem.6 Even, Yacobi and
Lempel [22,51] devised a public key cryptosystem such that an efficient
adversary that breaks the system for every key implies an efficient algo-
rithm for an NP-complete problem. An efficient adversary that breaks
the system on almost all keys, however, is also discussed.

Shamir [68] discusses the difficulty in formulating a definition of
intractability for cryptographic applications. Worst-case complexity is
immediately seen as inadequate. Furthermore, Shamir emphasizes that
a cryptographic system cannot be considered secure if there is an attack
that takes expected polynomial time. In fact, Shamir adds, it is not
even enough to rule out expected polynomial time attacks. Consider,
for example, a system that can be broken by an attacker whose expected
running time is very large but whose median running time is efficient.
This is possible if the attacker takes a very long time, say, on one-third
of the keys but is efficient otherwise. Even though the expected running
time of the adversary is large, such a system cannot be considered
secure.

6 Indeed, Diffie and Hellman give two main justifications for their claim that “we stand on
the brink of a revolution in cryptography”: the availability of cheap and efficient computers
(in the 1970s!) and the development of NP-completeness.
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The median running time of an adversary is thus a better complex-
ity measure of the expected running time, Shamir notes, but one needs
to go beyond, and consider the running time of, say, the 1% fraction of
inputs on which the algorithm is fastest. This short discussion antici-
pates the formal definition of one-way function and the difficulties in
defining a robust notion of “average-case tractability” in Levin’s theory
of average-case complexity.

The work of Blum, Goldwasser, Micali, and Yao [14,35,76] put cryp-
tography on solid foundational grounds, and introduced the modern
definitions of one-way functions, trapdoor permutations, pseudoran-
dom generators, and secure encryption. In their definition, an efficiently
computable function f is one-way if there is no polynomial-time algo-
rithm that finds a pre-image of f(x) with more than inverse polynomial
probability over the choice of x. This means that if f is a one-way func-
tion, then the computational problem “given y = f(x) find a pre-image
of y,” has no algorithm of expected polynomial time, no algorithm of
median polynomial time, no algorithm that runs in polynomial time on
the easiest 1% fraction of inputs, and so on.

1.2.2 Levin’s theory of average-case intractability

The development of the theory of NP-completeness gave evidence that
a large number of important computational problems do not admit
worst-case efficient algorithms and motivated the design of good-on-
average algorithms as a way to “cope” with intractability.

Following this approach, the goal is to analyze worst-case
superpolynomial-time algorithms for NP-complete problems and to
show that on “typical” instances they are efficient. A celebrated
example is Karp’s algorithm for TSP in the plane [46]. An anno-
tated bibliography by Karp et al. [47] written in 1985 reports several
results on average-case tractability of NP-complete problems on natural
distributions.

The initial success in the design of good-on-average algorithms led
to the question of the limitations of such an approach. Are there NP-
complete problems that, with respect to natural distributions, do not
even have good-on-average algorithms? Are there general techniques,
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analogous to the theory of NP-completeness, to prove average-case
intractability?7

Levin [53] laid the foundations for a theory of the average-case
tractability of problems in NP. He introduced the definition of average-
case tractability and of reduction outlined above and proved the first
completeness result, for the class (NP,PComp) of problems (L,D) such
that L is in NP and D is polynomial-time computable.

Levin’s article, both in the one-page conference version and in
the two-page full version [53], gives few details about the intuition
behind the definitions and the possibility of generalized or alternative
definitions.

Ben-David et al. [12] consider two issues not addressed in Levin’s
article. One issue is the class of distributions to consider. Levin restricts
his attention to the class of “polynomial time computable distribu-
tions” that includes several natural distributions but that excludes, for
example, the output of a pseudorandom generator and other natural
distributions. Ben David et al. observe that the more general class of
“efficiently samplable” distributions is a better formalization of the
notion of natural distribution and formulate the question of whether
Levin’s completeness result can be extended to the corresponding class
(NP,PSamp) of distributional problems (L,D) such that L is in NP
and D is samplable. Another issue studied in [12] is the average-case
complexity of decision versus search problems, and their main result
shows that if every decision problem in NP can be solved efficiently
with respect to the uniform distribution, then every search problem
in NP can also be solved efficiently with respect to the uniform dis-
tribution. Impagliazzo and Levin [42], solving the main open question
formulated in [12], prove that there is a problem that is complete for
(NP,PSamp).

7 Interestingly, around the same time (mid-1970s), another approach was studied to “cope”
with the intractability of NP-complete optimization problems, namely, to design provably
efficient approximate algorithms that deliver near-optimal solutions, and the question was
asked of when not even such algorithms exist. In the 1990s, the theory of probabilistically
checkable proofs gave a powerful tool to prove intractability of approximation problems.
A satisfactory and general theory to prove average-case intractability, unfortunately, does
not exist yet.
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1.2.3 Average-case intractability and derandomization

Yao [76] proves that the existence of pseudorandom generators implies
the possibility of derandomizing probabilistic algorithms, and that
pseudorandom generators can be constructed using one-way permu-
tations. (H̊astad et al. [39] later proved that the existence of one-
way functions is sufficient.) The existence of a one-way permutation
f can be stated as the average-case intractability of the distribu-
tional search problem of inverting f on a random input, so Yao’s
result proves that a specific average-case assumption (for certain search
problems within NP) implies derandomization of probabilistic algo-
rithms. The connection between average-case complexity and deran-
domization became more direct, simpler, and more general in the work
of Nisan and Wigderson [60]. Their work requires the existence of
hard-on-average distributional decision problems in EXP. The work
of Nisan and Wigderson raised the question of whether derandomiza-
tion could be based on worst-case assumptions about problems in EXP
instead of average-case assumptions. The question led to the study of
worst-case versus average-case complexity in EXP, and to such tools
as random self-reduction [10], amplification of hardness [41, 44], and
error-correcting codes [69]. As a result of this decade-long investiga-
tion, we now know that worst-case and average-case are equivalent in
complexity classes such as EXP and PSPACE. The interested reader
can find an account of such results in survey articles by Trevisan [71]
(see, in particular, Chapter 4) and by Kabanets [45].

1.2.4 Worst-case versus average case within NP

The proofs of the worst-case and average-case equivalence for complete
problems in EXP, PSPACE, and other classes raise the question of
whether a similar worst-case and average-case equivalence also holds for
intractable problems within NP. This is related to fundamental ques-
tions in the foundations of cryptography: Is it possible to base one-way
functions on NP-completeness? If so, what about one-way permutations
or public key encryption?

On the one hand, it is easy to see that one-way permutations can-
not be based on NP-completeness, unless NP = coNP (or AM = coAM,



14 Introduction

if one allows randomized reductions, or NP/poly = coNP/poly, if one
allows non-uniform reductions). Not even the intractability of worst-
case inversion can be based on NP-completeness (see Section 7.2).

On the other hand, it is possible to define “one-way functions” that
are computable in polynomial time and that cannot have a “worst-case
inverter” (i.e., a polynomial time inverter that works on all inputs)
unless P = NP. For this reason, when we ask whether the existence of
one-way functions (under the standard, average-case, definition) can be
based on NP-completeness, we are asking a question about the average-
case complexity of inverters.

To clarify before we continue: The existence of one-way permu-
tations implies the existence of one-way functions, which implies the
existence of hard-on-average distributional problems in (NP,PSamp),8

which implies that P is different from NP. We do not know how to prove
the inverse of any of those implications, even though we believe that
all the statements are true, and so they all imply each other vacously.

We can ask, however, whether reverse implications can be proved
via reductions, that is, for example, whether there is a distributional
problem (L,D) in (NP,PSamp) and a reduction R such that, for every
algorithm A that solves (L,D) well on average, the reduction R plus
the algorithm A give a worst-case algorithm for 3SAT.

Feigenbaum and Fortnow [27] study a special case of the above ques-
tion. They consider the case in which R is a “non-adaptive random self-
reduction.” They show that the existence of such a reduction implies
the collapse of the polynomial hierarchy (which contradicts standard
conjectures). The result of Feigenbaum and Fortnow rules out a cer-
tain way of proving equivalence of worst-case and average-case for NP-
complete problems, including the way used in the work on EXP and
PSPACE [10,41,44,69] (see Section 7.3).

In a celebrated breakthrough, Ajtai [5], describes a distributional
problem in (NP,PComp) whose average-case complexity is at least as
high as the worst-case complexity of a related (promise) problem in
NP–a version of the shortest vector problem for lattices in R

n. Ajtai
also proves the existence of one-way functions that are based on the

8 This implication is non-trivial; see Section 4.3.
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worst-case complexity of problems in NP. Ajtai and Dwork [7] present
a public key cryptosystem based on a worst-case assumption, and Mic-
ciancio and Regev [57,59,64] present various improvements.

The security of the cryptosystems of Ajtai, Dwork, Micciancio, and
Regev relies on the worst-case complexity of problems that are not
known to be NP-complete and, in fact, are in NP ∩ coNP. It remains
an open question whether these techniques can be refined and improved
to the point where cryptography primitives can be constructed that rely
on the worst-case complexity of an NP-complete problem.

Bogdanov and Trevisan [15] prove that no non-adaptive worst-
case to average-case reduction exists for NP-complete problems unless
NP/poly = coNP/poly. Akavia et al. [9] prove that one-way functions
cannot be based on NP-complete problems via non-adaptive reductions
unless AM = coAM (see Section 7.3).

It seems likely that reductions cannot relate worst-case and average-
case hardness in NP. What about different degrees of average-case
intractability? For instance, if there exist distributional problems in
NP that are hard on some non-negligible fraction of instances, does
it follow that there are distributional problems in NP that are hard
on almost all instances? These questions have been answered in the
affirmative by O’Donnell [61] and Healy, Vadhan, and Viola [40] in the
non-uniform setting and by Trevisan [70,72] in the uniform setting (see
Chapter 6).



2
Definitions of “Efficient on Average”

A distributional decision problem is a pair (L,D), where L is a language
and D describes how inputs are distributed. There are various possible
formalizations of how D is specified, of what constitutes a “natural”
subset of distribution of inputs to restrict to, and of what it means for a
distributional problem to have a good-on-average algorithm. We discuss
the various definitions, and the relations among them, in this section.

2.1 Distribution over inputs

There are at least two common conventions on how to specify D. The
convention introduced by Levin [53] is that D is a probability distribu-
tion over the set {0,1}∗ of all possible bit strings. This convention is
convenient in many applications and, for example, it leads to a simple
definition of reduction preserving average-case algorithms. Sometimes,
however, the single-distribution convention leads to counterintuitive
definitions: in the uniform distribution over {0,1}∗, as defined by Levin,
each binary string of length n has probability Θ(n−22−n). In the single-
distribution setting it is also harder to quantify average-case hardness
and to give definitions of circuit complexity, and both of these notions
are important for applications to derandomization.

16
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The other possibility is to define for each n a finite distribution Dn,
with the intuition that Dn is a distribution over inputs of “size” n, and
to let D be the ensemble D = {Dn}n>0. This convention is common in
cryptography and derandomization. In cryptography, it is common to
call n the security parameter of the distribution Dn.

In this article we adopt the second convention, where D is an
ensemble of distributions. When discussing average-case complexity
with respect to samplable ensembles, the two definitions are essentially
equivalent, as we show in Appendix A.

In Section 3 we discuss an average-case analog of the notion
of NP-completeness. Intuitively, we would like a definition of
“average-case NP-hard” distributional problem (L,D) such that if
(L,D) is average-case tractable then for every problem L′ in NP
and every ensemble D′, the distributional problem (L′,D′) is also
average-case tractable. Unfortunately, such an approach is unlikely
to work:

(1) As we show in Section 2.5, a conclusion of the form “for every
problem L′ in NP and every D′, the distributional problem
(L′,D′) is average-case tractable” implies P = NP, even if we
allow very weak notions of average-case tractability.

(2) As we show in Chapter 7, it is unlikely that we can use reduc-
tions to prove statements of the form “if (L,D) is average-
case tractable then P = NP,” where L is in NP and D is, say,
the uniform ensemble.

Together, these two results imply that an average-case analog of the
theory of NP-completeness cannot refer to the class of all distributional
problems (L,D) with L in NP, and that it is necessary on put some
restriction on the class of distributions to be considered.

The most natural restriction is to consider samplable ensembles,
that is, ensembles of distributions that can be realized as outputs of a
polynomial-time sampling algorithm. There are, in turn, several pos-
sible formalizations of the notion of samplable distributions: among
other choices, we may require the sampling algorithm to always run in
polynomial time (in which case the sampler is said to run in strict
polynomial time) or to run in expected polynomial time (the latter
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notion itself has various possible formalizations), and we may require
the output of the sampler to be a perfect, statistical, or computa-
tional simulation of the true distribution. The distinction between these
various notions of efficient samplability is important in the study of
zero-knowledge protocols, and we refer the reader to the chapter on
Zero Knowledge in Oded Goldreich’s book [31]. For our purposes, it
will be convenient to just consider the simplest definition, correspond-
ing to perfect sampling with strict polynomial running time.1

Definition 2.1. (samplable ensemble) An ensemble D = {Dn} is
polynomial-time samplable if there is a randomized algorithm A that,
on input a number n, outputs a string in {0,1}∗ and:

• there is a polynomial p such that, on input n, A runs in time
at most p(n), regardless of its internal coin tosses;

• for every n and for every x ∈ {0,1}∗, Pr[A(n) = x] = Dn(x).

We will also be interested in a more restricted class of distributions,
those for which the cumulative probability of a given string is effi-
ciently computable. Let � denote the lexicographic ordering between
bit strings, then if D is a distribution we define

fD(x) = D({y : y � x}) =
∑
y�x

D(y).

Definition 2.2. (computable ensemble) We say that an ensemble
D = {Dn} is polynomial-time computable if there is an algorithm that,
given an integer n and a string x, runs in time polynomial in n and
computes fDn(x).

Observe that if {Dn} is a computable ensemble, then in particular
the function Dn(x) is computable in time polynomial in n.

We let PSamp denote the class of polynomial-time samplable
ensembles, and PComp denote the class of polynomial-time com-
putable ensembles.

1 We stress, however, that the results that we prove about samplable ensembles remain true
even if we adopt more relaxed definitions of samplability.
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The uniform ensemble U = {Un}, where Un is the uniform distri-
bution over {0,1}n, is an example of a polynomial-time computable
ensemble. Abusing notation, we also denote the class whose only mem-
ber is the uniform ensemble by U .

It is not difficult to see that every polynomial-time computable
ensemble is also polynomial-time samplable (see Section 3.3). The con-
verse does not hold unless P = P#P. In fact, PComp = PSamp if and
only if P = P#P.

Distributional complexity classes: A distributional complexity class
is a collection of distributional decision problems. For a class of lan-
guages C and a class of ensembles D, we use (C,D) to denote the
distributional complexity class consisting of all problems (L,D), where
L ∈ C and D ∈ D. In this study we focus on the distributional com-
plexity classes (NP,PSamp), (NP,PComp), and (NP,U).

2.2 Heuristic and errorless algorithms

In this section we define two notions of average-case tractability.
Suppose that we are interested in algorithms that are efficient on

average for some samplable ensemble D = {Dn}. For technical reasons,
our algorithms are given, in addition to the input x, a parameter n

corresponding to the distribution Dn from which x was sampled. We
write A(x;n) to denote the output of algorithm A on input x and
parameter n.

2.2.1 Average polynomial time and errorless heuristics

We begin by considering algorithms that never make mistakes and that
are efficient on “typical instances.” A simple measure of average-case
complexity of an algorithm A would be its expected running time, and
so we may think of defining an algorithm A as having “polynomial on
average” running time for a distributional problem (L,D) if there is a
polynomial p such that

Ex∼Dn [tA(x;n)] =
∑

x∈{0,1}∗
Dn(x)tA(x;n) ≤ p(n),
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for every n, where tA(x;n) is the running time of A on input x and
parameter n.

Such a definition is problematic because there are algorithms that we
would intuitively consider to be “typically efficient” but whose expected
running time is superpolynomial. For example, suppose that A is an
algorithm of expected polynomial running time, and let B be an algo-
rithm that is quadratically slower than A (i.e., for every x, tB(x;n) =
tA(x;n)2). Then we should definitely think of B as being typically effi-
cient. Suppose, however, that Dn is the uniform ensemble and that A

runs in time, say, O(n2) on all inputs of length n, except on a set of 2n/2

inputs on which it takes time O(2n/2); then the expected running time of
A is O(n2) (the few “hard inputs” only contribute an additive constant
to the average running time). If B, however, is quadratically slower than
A, then B takes time O(n4) on all inputs except on 2n/2 on which it takes
time O(2n). The average expected running time of B is now O(2n/2),
dominated by the time taken on the hard inputs.

In order to be less dependent on the running time of exceptional
inputs, we may decide to look at the median running time instead of
the expected running time. Such a choice would work well with the
above example: both A and B have polynomial median running time.
More generally, if A is an algorithm of polynomial median running
time and B runs polynomially slower than A, then B must also have
polynomial median running time.

Consider, however, an algorithm that runs in time O(n2) on 2
3 · 2n

inputs and in time O(2n) on 1
3 · 2n inputs of length n. Such an algo-

rithm has polynomial median running time with respect to the uniform
ensemble, but intuitively we would not consider it to be a “typically”
efficient algorithm.

We may choose to consider the 99th percentile instead of the
median, but such a threshold would be arbitrary. What we would really
like to capture with a definition is the notion that a “typically efficient”
algorithm may take very long, even exponential time, on some inputs,
but that the fraction of inputs requiring larger and larger running time
is smaller and smaller. In formalizing this intuition, it is natural to
require a polynomial trade-off between running time and fraction of
inputs. This leads us to our first definition.
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Definition 2.3. (average polynomial running time – trade-off
definition) An algorithm A has average polynomial running time with
respect to the ensemble D if there is an ε > 0 and a polynomial p such
that for every n and every t:

Prx∼Dn [tA(x;n) ≥ t] ≤ p(n)
tε

.

If A satisfies the above definition, then the median running time of
A is polynomial, and, furthermore, A runs in polynomial time on all
but at most a 1/n fraction of the inputs, in time at most nO(logn) on
all but at most a 1/nlogn fraction of the inputs, and so on. Levin gave
the following equivalent definition.

Definition 2.4. (average polynomial running time – Levin’s
definition) An algorithm A has average polynomial running time with
respect to the ensemble D if there is an ε > 0 such that

Ex∼Dn [tA(x;n)ε] = O(n).

Naturally, O(n) can be replaced by an arbitrary polynomial in n.
The two definitions are easily seen to be equivalent.

Proposition 2.5. An algorithm A has average polynomial running
time with respect to the ensemble D according to Definition 2.3 if and
only if it does according to Definition 2.4.

Proof. Suppose that the running time tA of A satisfies

PrDn [tA(x;n) ≥ t] ≤ nct−ε,

for some constants c,ε and for every sufficiently large n. Define δ =
ε/(c + 2). Then,

EDn [tA(x;n)δ] =
∑

t

PrDn [tA(x;n)δ ≥ t]

≤ n +
∑
t≥n

PrDn [tA(x;n) ≥ t1/δ]
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≤ n +
∑
t≥n

nct−ε/δ

= n +
∑
t≥n

nct−(c+2)

≤ n +
∑

t

t−2

= n + O(1).

This proves that if A satisfies Definition 2.3 then it satisfies Defini-
tion 2.4. For the other implication, suppose

EDn [tA(x;n)ε] = O(n).

Then, by Markov’s inequality

PrDn [tA(x;n) ≥ t] = PrDn [tA(x;n)ε ≥ tε] ≤ EDn [tA(x;n)ε]
tε

= O(nt−ε).

We now describe a third equivalent way to think of average poly-
nomial time. Suppose that A is an algorithm of average polynomial
running time according to the above definitions. If we think about run-
ning A “in practice,” it is reasonable to assume that we will not be
able to run A for more than a polynomial number of steps. We can
then think of the inputs on which A takes superpolynomial time as
inputs on which A “fails,” because we have to stop the computation
without being able to recover the result.

The notion of an algorithm that fails on some inputs is captured by
the following definition.

Definition 2.6. (errorless heuristic scheme) We say that an algo-
rithm A is a (fully polynomial-time) errorless heuristic scheme for
(L,D) if there is a polynomial p such that

(1) For every n,δ > 0, and every x in the support of Dn, A(x;n,δ)
outputs either L(x) or the special failure symbol ⊥.

(2) For every n,δ > 0, and every x in the support of Dn, A(x;n,δ)
runs in time at most p(n/δ).
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(3) For every n and every δ > 0,

Prx∼Dn [A(x;n,δ) = ⊥] ≤ δ.

We now show that errorless heuristic schemes are yet another way
of capturing the notion of average-case tractability of Definitions 2.3
and 2.4.

Proposition 2.7. A distributional problem (L,D) admits a fully
polynomial-time errorless heuristic scheme if and only if it admits an
algorithm whose running time is average-polynomial according to Def-
initions 2.3 and 2.4.

Proof. Suppose that A is an algorithm that runs in average-polynomial
time according to Definition 2.3, that is, assume that there is a poly-
nomial p and an ε > 0 such that for every n,

PrDn [tA(x;n) ≥ t] ≤ p(n)
tε

.

Then define the algorithm A′ that on input x and parameters n,δ sim-
ulates A(x;n) for (p(n)/δ)1/ε steps. If the simulation halts within the
required number of steps, then A′(x;n,δ) gives the same output as
A(x;n); otherwise A′(x;n,δ) outputs ⊥. It is easy to see that A′ satis-
fies the definition of an errorless heuristic scheme.

Suppose now that A′ is an errorless heuristic scheme for
(L,D). Define the algorithm A as follows: On input (x;n), sim-
ulate A(x;n,1/2), if A(x;n,1/2) �= ⊥, then return the output of
A(x;n,1/2), otherwise simulate A(x;n,1/4), and so on, simulating
A(x;n,1/8), . . . ,A(x;n,2−k), . . . until we reach a value of δ such that
A(x;n,δ) �= ⊥. Eventually, the algorithm succeeds because when δ <

Dn(x) then A(x;n,δ) cannot output ⊥. After k iterations, A uses time∑k
i=1 p(2in) = O(k · p(2kn)), for a polynomial p, and it halts within k

iterations on all but a 1/2k fraction of inputs. It is now easy to verify
that A runs in average polynomial time according to Definition 2.3.

Having given three equivalent formulations of “efficient on average”
algorithms, we are ready to define a complexity class of distributional
problems.
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Definition 2.8. (average polynomial time) We define AvgP to be
the class of distributional problems that admit an errorless heuristic
scheme.

The third approach to the definition leads naturally to a finer quan-
titative definition.

Definition 2.9. (errorless heuristic algorithms) Let L be a lan-
guage, D be an ensemble, and δ : N → R

+. We say that an algorithm
A is an errorless heuristic algorithm for (L,D) with failure probability
at most δ if

• For every n and every x in the support of Dn, A(x;n) outputs
either L(x) or the special failure symbol ⊥, and

• For every n, Prx∼Dn [A(x;n) = ⊥] ≤ δ(n).

For a function t : N → N, we say that (L,D) ∈ AvgδDTIME(t(n)) if
there is an errorless heuristic deterministic algorithm A that for every
n and every x ∈ Supp(Dn) runs in time t(n) with failure probability at
most δ(n).

We define AvgδP as the union over all polynomials p of
AvgδDTIME(p(n)).

We use AvgnegP to denote the union of all classes AvgδP, where δ is
a negligible function. Recall that δ is negligible if, for every polynomial
p and for every sufficiently large n, δ(n) ≤ 1/p(n).

Observe that an errorless heuristic scheme for a distributional prob-
lem automatically yields errorless heuristic algorithms with error prob-
ability 1/p(n) for the same problem, for every polynomial p. For certain
problems, heuristic algorithms can conversely be turned into heuristic
schemes. We discuss this connection in Section 3.3.

2.2.2 Heuristic algorithms

So far we have considered only algorithms that never make mistakes:
they always either produce a correct answer or fail. It is also interesting
to consider algorithms that return incorrect answers on a small fraction
of inputs.
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Definition 2.10. (heuristic algorithms) Let L be a language, D be
an ensemble, and δ : N → R

+. We say that an algorithm A is a heuristic
algorithm for (L,D) with error probability at most δ if for all n > 0,

Prx∼Dn [A(x;n) �= L(x)] ≤ δ(n) .

Definition 2.11. (heuristic polynomial time) For functions t :
N → N and δ : N → R

+, we say that (L,D) ∈ HeurδDTIME(t(n)) if
there is a heuristic deterministic algorithm A that for every n and every
x ∈ Supp(Dn) runs in time t(n) with failure probability at most δ(n).

We define HeurδP as the union over all polynomials p of
HeurδDTIME(p(n)).

We say that an algorithm A is a (fully polynomial-time) heuristic
scheme for (L,D) if there is a polynomial p such that

(1) For every n, for every x in the support of Dn and every
δ > 0, A(x;n,δ) runs in time at most p(n/δ).

(2) For δ > 0, A(·; ·, δ) is a heuristic algorithm for (L,D) with
error probability at most δ.

We define HeurP to be the class of distributional problems that
admit a heuristic scheme.

We use HeurnegP to denote the union of all classes HeurδP, where
δ is a negligible function.

An errorless algorithm can be easily turned into a heuristic algo-
rithm by replacing the failure symbol ⊥ by an arbitrary output.
Thus, AvgC ⊆ HeurC and AvgδC ⊆ HeurδC for all classes of this type
described above.

2.3 Non-uniform and randomized heuristics

We will also be interested in non-uniform and randomized heuristic
algorithms.

Deterministic heuristics turn out to be an inadequate notion in
much of average-case complexity, including many of the results stated
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in this survey. For instance, the decision-to-search reduction of Ben-
David et al. in Chapter 4 and the reductions of Impagliazzo and Levin
from (NP,PSamp) to (NP,U) in Chapter 5 are both randomized, so to
understand these reductions one must first define the notion of a ran-
domized heuristic. The results on hardness amplification in Chapter 6
make use of both randomness and non-determinism.

However, the definitions of non-uniform and randomized heuristics
contain some subtleties, and if the reader feels overwhelmed by defini-
tions at this point, he or she may skip ahead to Section 2.4.

Non-uniform heuristics: For a function s : N → N, we define
HeurδSIZE(s(n)) and HeurP/poly in the same way we define
HeurδDTIME(t(n)) and HeurP, respectively, but referring to “circuits
of size s(n)” instead of “algorithms running in time t(n).” Similarly, we
define the non-uniform errorless heuristic classes AvgδSIZE(s(n)) and
AvgP/poly.

A small technical point is that, when we consider a distributional
problem (L,{Dn}), the inputs in the support of Dn may have different
lengths. In such a case, we need to fix a convention to allow Boolean
circuits to accept inputs of various lengths. Once such a convention
is chosen, then, for example, (L,{Dn}) ∈ AvgδSIZE(s(n)) means that
there is a family of circuits Cn such that, for every n: (i) Cn is of size at
most s(n); (ii) for every x in the support of Dn, Cn(x) outputs either
L(x) or ⊥; (iii) Prx∼Dn [C(x) �= L(x)] ≤ δ(n).

Randomized heuristics:When defining randomized heuristic algo-
rithms, there are two ways in which the algorithm can fail to produce a
correct answer: It can run either on an input on which the heuristic fails
or run on an input for which the heuristic is good but make a bad inter-
nal coin toss. It is important to keep this distinction in mind when defin-
ing randomized errorless heuristic algorithms. Here “errorless” refers to
the choice of input and not to the internal coin tosses of the algorithm.

In particular, we allow the randomized errorless algorithm to some-
times output incorrect answers, as long as for every instance x, the
fraction of random strings for which the algorithm outputs the wrong
answer is small compared to the fraction of random strings for which
it outputs either the right answer or ⊥.
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Definition 2.12. (randomized errorless heuristics) Let (L,D) be
a distributional problem and δ : N → R

+. We say that a randomized
polynomial-time algorithm A is a randomized errorless heuristic algo-
rithm of failure probability at most δ if, for every n > 0, and every x

in the support of Dn,

Pr[A(x;n) �∈ {L(x),⊥}] ≤ 1/4,

where the probability is taken over the coin tosses of A, and

Prx∼Dn

[
Pr[A(x;n) = ⊥] ≥ 1/4

] ≤ δ(n),

where the inner probability is over the internal coin tosses of A.

To see why this definition makes sense, fix an input (x;n) and imag-
ine running the algorithm k times, for some large k. If substantially
more than k/4—say, k/3—of these runs return the failure symbol ⊥,
we can interpret this as a sign that the algorithm does not know the
answer for x. The second condition of Definition 2.12, together with
standard Chernoff-type bounds, guarantees that this will not happen
for more than a δ(n)-fraction of instances x ∼ Dn with high probability
over the randomness of the algorithm.

If, on the other hand, the number of runs that return ⊥ is smaller
than k/3, then the first condition of Definition 2.12 guarantees that
with high probability, a majority of the runs that do not output ⊥ will
output the correct answer, so we obtain the correct answer for x with
high probability over the randomness of the algorithm.

This argument shows that the choice of constant 1
4 is arbitrary,

and any constant bounded away from 1
3 can serve in the definition. In

the other direction, the algorithm A′ that simulates A k = k(n) times
satisfies:

Pr[A′(x;n) �∈ {L(x),⊥}] = 2−Ω(k(n)) (2.1)

and

Prx∼Dn

[
Pr[A′(x;n) = ⊥] ≥ 1

2k(n)/100

]
≤ δ(n). (2.2)
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If the constant 1
4 is replaced by 0 in the first condition of Defini-

tion 2.12, we obtain the definition of zero-error randomized errorless
heuristics.

Definition 2.13. (randomized errorless classes) We say that
(L,D) is in AvgδBPTIME(t(n)) if there is a randomized errorless algo-
rithm A of failure probability at most δ(n) and of running time at
most t(n) on inputs in the support of Dn. If A is zero error, we say
that (L,D) is in AvgδZPTIME(t(n)).

We define AvgδBPP, AvgBPP, AvgδZPP, and AvgZPP in the obvi-
ous way.

If we choose k(n) = O(n) in equations (2.1) and (2.2), the prob-
abilities over the internal coin tosses of A′ can be made smaller
than 2n, and using Adleman’s proof that BPP ⊆ P/poly [3], we have
AvgδBPP ⊆ AvgδP/poly, AvgBPP ⊆ AvgP/poly, and so on.

In the case of heuristic algorithms that are allowed to make errors,
the definition simplifies as we do not have to distinguish between errors
owing to bad inputs and errors owing to bad internal coin tosses.

Definition 2.14. (randomized heuristics) Let (L,D) be a distribu-
tional problem and δ : N → R

+. We say that a randomized algorithm A

is a randomized heuristic of failure probability at most δ if for every n,

Prx∼Dn

[
Pr[A(x;n) �= L(x)] ≥ 1/4

] ≤ δ(n),

where the inner probability is over the internal coin tosses of A.

Definition 2.15. (randomized heuristic classes) We say that
(L,D) is in HeurδBPTIME(t(n)) if there is a randomized errorless algo-
rithm A of failure probability at most δ(n) and of running time at most
t(n) on inputs in the support of Dn. We define HeurδBPP and HeurBPP
in the obvious way.

For all classes of the type AvgδC and HeurδC defined above, we
define AvgnegC and HeurnegC as their union over all negligible func-
tions δ, respectively.
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For the non-uniform and randomized heuristic classes, we have the
standard containments AvgC ⊆ HeurC. For the classes of type AvgδC
and HeurδC it is possible to improve the containments in the deter-
ministic case, as the algorithm can randomly (or non-uniformly) guess
the answer for ⊥, so that AvgδC ⊆ Heurδ/2C.

2.4 Representing inputs

Average-case complexity is more sensitive to how we encode inputs to
algorithms than worst-case complexity. For instance, operations like
changing the alphabet or duplicating an instance do not have much
effect in most treatments of worst-case complexity, while in average-case
complexity they can considerably modify the distribution on inputs.

It will, therefore, be convenient to fix an encoding for inputs that is
robust for average-case reductions and algorithms. In the applications
described in this study, it will be necessary to have robust representa-
tions of the following types of inputs with respect to the uniform distri-
butions: tuples of strings, machines, and hash functions. For instance,
one feature of the encodings is that a random string in the uniform
distribution will represent a valid tuple or a valid hash function with
non-negligible probability. It is not difficult to imagine why this is cru-
cial for average-case algorithms. In contrast, many natural encodings
of these objects that are perfectly adequate in worst-case complexity
do not have these property.

We do not try to optimize our representations in any manner; we
simply choose representations that will be adequate for all applications
covered in this survey.

Tuples: We represent inputs to algorithms as strings in {0,1}∗.
A good representation for tuples of strings (in the uniform distri-
bution) should have the property that the probability of generat-
ing a tuple (x1, . . . ,xt) should be roughly 2−(|x1|+···+|xt|). We will
adopt the following convention for tuples: First, write a prefix-free
encoding of the number |x1| by repeating every bit twice and end-
ing with 01. Then write down x1. Repeat with x2, x3, up to xt.
Thus, the description length of (x1, . . . ,xt) is 2 log|x1| + · · · + 2log|xt| +
|x1| + · · · + |xt| + O(t). Alternatively, the probability of generating
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(x1, . . . ,xt) in the uniform distribution according to this representation
is (|x1| . . . |xt|)−22−(|x1|+···+|xt|+O(t)). Observe that this representation is
prefix free.

When all of the strings in the tuple have the same length, more
compact representations are of course possible; such representations
will be necessary for the results on hardness amplification in Chapter 6.

Machines: Sometimes the input (or a part of it) is the description of a
machine. The exact way in which machines are represented is irrelevant,
so we fix an arbitrary representation for machines.

Hash functions: In Chapters 4 and 5, algorithms take as part of their
input a description of a hash function h. By ”hash function” we mean a
random instance from a family of pairwise independent hash functions
mapping {0,1}m to {0,1}n for fixed m and n. To be specific, we can
think of the family of affine transformations h(x) = Ax + b, where A

is an m × n matrix, b is an n-bit vector, and the operations are over
Z2. We represent such transformations by specifying the tuple (A,b),
so that the description length is 2 logm + 4logn + mn + n + O(1).

For a function h : {0,1}m → {0,1}n, we use h|j (where 1 ≤ j ≤ n)
to denote the function that consists of the first j output bits of h. If h

is a hash function, then so is h|j .
We will also consider hash functions from {0,1}≤m (the set of binary

strings of length at most m) to {0,1}n. We will identify such functions
with hash functions from {0,1}m+1 to {0,1}n, where {0,1}≤m is embed-
ded in {0,1}m+1 in the natural way: String x maps to 0m−|x|1x.

2.5 A distribution for which worst case and average case
are equivalent

In this section we show that there exists a (possibly non-samplable)
ensemble of distributions with respect to which worst-case and
average-case tractability are equivalent notions. Thus, the study of
average-case complexity with respect to all ensembles reduces to the
study of worst-case complexity, and in this sense it is natural to consider
restricted classes such as computable and samplable ensembles, as we
do in the remainder of this study.
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Theorem 2.16. (Levin, Li, and Vitányi) There is an ensemble D
such that if L is a decidable language and the distributional problem
(L,D) is in Heur1/n3P, then L ∈ P.

We present a proof due to Li and Vitányi [55] that relies on
Kolmogorov complexity.

We consider pairs (M,w), where M is a machine and w is a string.
Recall that if M is � bits long and w is n bits long, then (M,w) has
length � + n + 2log� + 2logn + O(1).

For a binary string x, denote K(x) as the length of the shortest pair
(M,w) such that M on input w outputs x. The value K(x) is called
the (prefix-free) Kolmogorov complexity of x.

The universal probability distribution K is defined so that the prob-
ability of a string x is 2−K(x). Observe that

∑
x 2−K(x) ≤ 1 since the

representation of (M,w) is prefix free. (In fact,
∑

x 2−K(x) < 1 so K is
technically not a probability distribution, but we can correct this by
assigning, say, to the empty string ε the probability 1 − ∑

x 	=0 2−K(x).)
Finally, let {Kn} be the ensemble of distributions, where Kn is the
distribution K conditioned on strings of length n.

It turns out that for every language L, solving L well on average
with a heuristic algorithm is as hard as solving L well on the worst case.

Proof of Theorem 2.16. We use the ensemble {Kn} defined above.
Let A be the polynomial-time heuristic algorithm that witnesses

(L,{Kn}) ∈ Heur1/n3P. We will argue that there is only a finite number
of inputs x such that A(x; |x|) �= L(x), which implies that L ∈ P.

We first need to understand the distributions Kn in the ensemble.
By definition,

Kn(x) =
2−K(x)∑

y∈{0,1}n 2−K(y)

and we can see that
∑

y∈{0,1}n 2−K(y) = Ω(1/n(logn)2) because the
string 0n has Kolmogorov complexity at most logn + 2log logn + O(1)
and so contributes at least Ω(1/n(logn)2) to the sum.

This implies

Kn(x) = O(n(logn)2 · 2−K(x)) = 2−K(x)+logn+2log logn+O(1).
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Now let x be a string of length n such that A(x;n) �= L(x); since the
overall probability of all such strings is at most 1/n3, in particular we
must have Kn(x) ≤ 1/n3, and

K(x) = log
1

Kn(x)
− logn − 2log logn − O(1)

≥ 2logn − 2log logn − O(1). (2.3)

Consider now the lexicographically first string x in {0,1}n (if any) such
that A(x;n) �= L(x). Such a string can be computed by an algorithm
that, given n, computes A(x;n) and L(x) for all strings x ∈ {0,1}n and
outputs the lexicographically first x for which A(x;n) �= L(x). (Here
we are using the assumption that L is decidable.) Such an algorithm
proves that K(x) ≤ logn + 2log logn + O(1), and, for sufficiently large
n, this is in contradiction with (2.3).

We conclude that there can only be a finite number of input lengths
on which A and L differ, and so a finite number of inputs on which A

and L differ.



3
A Complete Problem for Computable Ensembles

In this Chapter we give a definition of reduction that preserves average-
case tractability and we prove the existence of a problem complete for
(NP,PComp).

3.1 Reductions between distributional problems

We begin by defining an appropriate notion of reduction. Besides the
usual correctness requirement for reductions in worst-case complexity,
a reduction in average-case complexity must in some sense match the
distributions on instances of the two problems. Namely, in a reduction
from (L,D) to (L′,D′), we want the process of sampling an instance
from D, then applying the reduction to it, roughly yields the distribu-
tion D′.

Definition 3.1. (reduction between distributional problems)
Let (L,D) and (L′,D′) be two distributional problems. We say that
(L,D) reduces to (L′,D′), and write (L,D) ≤AvgP (L′,D′), if there is
a function f that for every n, on input x in the support of Dn and
parameter n, can be computed in time polynomial in n and

33
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(1) (Correctness) x ∈ L if and only if f(x;n) ∈ L′.
(2) (Domination) There are polynomials p and m such that, for

every n and every y in the support of D′
m(n),∑

x:f(x;n)=y

Dn(x) ≤ p(n)D′
m(n)(y).

Part (1) of the definition is the standard requirement of mapping
reductions. The intuition for part (2) is that if we sample a string x

from Dn and then compute y = f(x;n), we generate y with probability
not much larger than if y had been sampled according to D′

m(n).
The reduction preserves the notions of average-case tractability as

defined in Chapter 2.

Lemma 3.2. If (L,D) ≤AvgP (L′,D′) and (L′,D′) ∈ C, where C
is one of the distributional classes AvgP,AvgnegP,HeurP,HeurnegP,

AvgBPP,HeurBPP,AvgP/poly,HeurP/poly, then (L,D) ∈ C.

Proof. For concreteness, we show the case C = AvgP, but the same
proof works for all the other cases. Suppose that (L′,D′) is in AvgP
and let A′ be the fully polynomial-time errorless heuristic scheme for
(L′,D′), let f be the reduction from (L,D) to (L′,D′), let p and m be
the polynomials as in the definition of reduction.

We claim that A(x;n,δ) := A′(f(x;n);m(n), δ/p(n)) is a fully
polynomial-time errorless heuristic scheme for (L,D).

To prove the claim, we bound the failure probability of A. Let us fix
parameters n and δ, and let us define B to be the set of “bad” strings
y such that A′(y;m(n), δ/p(n)) = ⊥, and let Bm be B restricted to the
support of D′

m. Observe that D′
m(n)(Bm(n)) ≤ δ/p(n). Then,

Prx∼Dn [A(x;n,δ) = ⊥] =
∑

x:f(x;n)∈Bm(n)

Dn(x)

≤
∑

y∈Bm(n)

p(n)D′
m(y)

= p(n) · D′
m(n)(Bm(n))

≤ δ.

This establishes the claim and proves that (L,D) ∈ AvgP.
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3.2 The completeness result

In this section we prove the existence of a complete problem for
(NP,PComp), the class of all distributional problems (L,D) such that
L is in NP and D is polynomial-time computable. Our problem is
the following “bounded halting” problem for non-deterministic Turing
machines:

BH = {(M,x,1t) : M is a non-deterministic

Turing machine that accepts x in ≤ t steps}. (3.1)

Note that BH is NP-complete: Let L be a language in NP and M be a
non-deterministic Turing machine that decides L in time at most p(n)
on inputs of length n. Then a reduction from L to BH is simply the
mapping that takes a string x of length n to the triple (M,x,1p(n)).

We would like to show that the distributional problem (BH,UBH),
where UBH = {UBH

n } is the “uniform” ensemble of inputs for BH (we
will get to the exact definition of this ensemble shortly) is complete for
(NP,PComp). The standard reduction is clearly inadequate because,
if (L,D) is a distributional problem in (NP,PComp) and D is a dis-
tribution that is very far from uniform, then the triples (M,x,1p(n))
produced by the reduction will not be uniformly distributed.

The key idea in the reduction is to find an injective mapping C such
that if x is distributed according to D, then C(x) is distributed “almost”
uniformly. The reduction then maps (x;n) into (M ′,C(x),1p′(n)), where
M ′ is a machine that on input C(x) computes x and then runs M on x,
and where p′(n) is a polynomial upper bound to the running time of M ′.
We will show that such a mapping exists whenever D is a polynomial-
time computable ensemble.

Before moving on, let us define the “uniform distribution” of inputs
for BH. The instances of the problem are triples (M,x,1t), so that if the
representation of M has length � and x has length n, then the length
of the representation of (M,x,1t) is 2 log� + 2logn + 2log t + � + n +
t + Θ(1).

We think of the “uniform distribution” over inputs of length N

as follows: we flip random bits b1, . . . , bi until either i = N or we have
generated a valid prefix-free representation (according to the above
rules) of M,x. In the former case we output b1, . . . , bN ; in the latter
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case we output (M,x,1N−i). We denote this distribution by UBH
N . In

UBH
N , an instance (M,x,1t) has probability 2−(2 log �+2logn+�+n+Θ(1)),

where � is the length of the representation of M and n is the length
of x. (By convention, we declare that inputs not of the proper form
(M,x,1t) are not in the language BH.)

We now prove the following completeness result.

Theorem 3.3. The distributional problem (BH,UBH) is complete in
(NP,PComp) under the reductions of Definition 3.1.

Proof. Let (L,D) be a distributional problem in (NP,PComp).

Claim 3.4. Suppose D = {Dn} is a polynomial-time computable dis-
tribution over x. Then there exists an algorithm C(x) such that for all
n, C(x) runs in time polynomial in n and

(1) For every fixed n, for all x in the support of Dn, C(x) is
injective as a function of x, and

(2) |C(x)| ≤ 1 + min
{

|x|, log 1
Dn(x)

}
.

Observe that since Dn is polynomial-time computable, there exists
a polynomial m(n) such that no string in the support of Dn can be
more than m(n) bits long.

Proof. Fix an x ∈ SuppDn. If Dn(x) ≤ 2−|x|, then simply let C(x) =
0x, that is, 0 concatenated with x.

If, on the other hand, Dn(x) > 2−|x|, let y be the string that precedes
x in lexicographic order among the strings in {0,1}n and let p = fDn(y)
(if x is the empty string, then we let p = 0). Then we define C(x;n) =
1z. Here z is the longest common prefix of fDn(x) and p when both
are written out in binary. Since fDn is computable in polynomial time,
so is z. C is injective because only two binary strings s1 and s2 can
have the same longest common prefix z; a third string s3 sharing z as
a prefix must have a longer prefix with either s1 or s2. Finally, since
Dn(x) ≤ 2−|z|, |C(x)| ≤ 1 + log 1

Dn(x) .
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Let M be the non-deterministic Turing machine that, on input y,
accepts if and only if there exists a string x such that y = C(x) and
x ∈ L. Since L is in NP, machine M can be implemented so that, on
input C(x), where x is of length n, M runs in time at most q(n), where
q is a polynomial.

We can now describe the reduction. On input x and parame-
ter n, the reduction outputs the instance (M,C(x),1t(x)) of length
N(n); here, N(n) is chosen large enough so that when |C(x)| ≤ m(n),
we have t(x) ≥ q(n) (for instance, N(n) = m(n) + q(n) + 2logm(n) +
2logq(n) + O(1) suffices).

It can be seen immediately that x ∈ L if and only if
(M,C(x),1t(x)) ∈ BH. Regarding the domination condition, we observe
that the reduction is injective, and so we simply need to check that for
every n and x ∈ SuppDn we have

Dn(x) ≤ poly(n) · UBH
N(n)(M,C(x),1t(x)).

To verify the inequality, let � be the length of the binary represen-
tation of M . We have

UBH
N(n)(M,C(x),1q(n)) = 2−(2 log �+2log |C(x)|+�+|C(x)|+Θ(1)).

We observe that log|C(x)| ≤ log(m(n) + 1) and that |C(x)| ≤
log(1/Dn(x)) + 1, and so

UBH
N(n)(M,C(x),1q(n)) ≥ 2−(2 log �+�) · (m(n) + 1)−2 · Dn(x) · Ω(1)

as desired.

3.3 Some observations

3.3.1 Completeness of bounded halting: A perspective

The main idea in the proof of Theorem 3.3 is that it is possible to
extract the randomness from samples in a computable ensemble. In the
proof of Theorem 3.3, the randomness is extracted through compres-
sion: Indeed, the algorithm C compresses samples x from Dn in such a
way that the output C(x) is dominated by the uniform distribution.

Another possible way to extract the randomness from samples of a
computable ensemble is by inversion. Namely, if one views an instance
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x ∼ Dn as the output of some sampler S, then the problem of extracting
the randomness from x can be solved by inverting S. More precisely, one
arrives at the following question: Given x, is there an efficient proce-
dure that produces a random r such that S(n;r) = x? Such a procedure
would map samples of Dn to samples of the uniform distribution and
can be used to reduce the distributional problem (L,D) to some distri-
butional problem (L′,U). This perspective leads to an alternate proof
of Theorem 3.3.1

Alternate proof of Theorem 3.3. First, it is not difficult to see that
every polynomial-time computable ensemble D = {Dn} is also
polynomial-time samplable. To sample from a distribution Dn, the
sampling algorithm S(n) generates random bits r1, r2, . . . , rm(n) and,
using binary search, returns the lexicographically smallest x such that
fDn(x) > 0.r1r2 . . . rm(n). Here, m(n) is the running time of the algo-
rithm that computes fDn , and we assume without loss of generality
(for technical reasons) that m is injective. It is easy to check that each
sample is produced with the correct probability.

Observe that the sampler S is efficiently invertible in the following
sense: There exists an algorithm I that on input x ∈ Supp(Dn) runs in
time polynomial in n and outputs a uniformly random r ∈ {0,1}m(n)

conditioned on S(n;r) = x (meaning that S(n) outputs x when using r

for its internal coin tosses). The algorithm I first determines fDn(x)
and Dn(x) using binary search and oracle calls to fDn , then sam-
ples a m(n)-bit number uniformly from the interval (fDn(x) − Dn(x),
fDn(x)].

Now consider the language L′ that contains all r such that S(n;r) ∈
L, where |r| = m(n) (recall that m is injective). Then L′ is an NP
language, and moreover (L,D) reduces to the distributional problem
(L′,U): The reduction is implemented by the inversion algorithm I,
and both the correctness and domination properties are straightforward
from the definition.

Finally, consider the canonical reduction from (L′,U) to (BH,UBH),
which maps instance r of L′ to instance (M ′, r,1q(|x|)) of BH, where M ′

1 The statement is actually weaker as the alternate reduction is randomized.



3.3. Some observations 39

is a non-deterministic Turing machine for L′ and q(n) is the running
time of M ′ on inputs of length n. Let � denote the size of M ′, and
|r| = m. Then, for an appropriate choice of N , we have

UBH
N (M ′, r,1q(m)) = 2−(2 log �+2logm+�+m+Θ(1))

= 2−(2 log �+�) · m−2 · Um(r) · Ω(1),

and this reduction also satisfies the domination condition (as � does
not grow with input size).

The two proofs of Theorem 3.3 are not that different, as the encod-
ing function C in the original proof plays much the same role as
the inverter I in the alternate proof. However, despite the somewhat
artificial technical distinction, the perspectives are quite different: To
“recover” the uniform ensemble from a computable ensemble D, one
may attempt either to compress D or to invert its sampler. Indeed, the
two approaches lead to different insights and different proofs (and even
somewhat different theorems) when we extend these arguments to the
case of polynomial-time samplable ensembles in Chapter 5.

3.3.2 Heuristic algorithms versus heuristic schemes

When defining average-case complexity classes, we distinguished
between heuristic algorithms and heuristic schemes: For heuristic algo-
rithms, we fix a failure probability δ and require that the algorithm
succeeds on all but a δ-fraction of the instances. For heuristic schemes,
we require a single algorithm that works for all δ, but we allow the
running time to grow as a function of 1/δ.

It is clear that if a distributional problem has a heuristic scheme,
then it has heuristic algorithms with failure probability δ(n) = n−c

for every c > 0. In other words, for every c > 0, HeurP ⊆ Heurn−cP,
HeurBPP ⊆ Heurn−cBPP, AvgP ⊆ Avgn−cP, and so on.

In general the containments do not hold in the other direction: For
instance, Heurn−cP contains undecidable problems but HeurP does not.
However, the class (NP,PComp) as a whole admits heuristic schemes if
and only if it admits heuristic algorithms, as formalized in the following
proposition.
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Proposition 3.5. If (BH,UBH) ∈ Avg1/nC (respectively, Heur1/nC),
then (NP,PComp) ⊆ AvgC (respectively, HeurC). Here, C is one of P,
BPP, or ZPP.

Proof. For concreteness, let us show that if (BH,UBH) is in Avg1/nP,
then (NP,PComp) ∈ AvgP. By completeness of (BH,UBH) with
respect to distributional reductions, it is sufficient to show that
(BH,UBH) ∈ AvgP.

Let A be an errorless heuristic algorithm for (BH,UBH) with failure
probability 1/n. Using A, we construct an errorless heuristic scheme
A′(·; ·). The idea is to use self-reducibility and padding in order to map
short instances of BH into longer ones. Since the error probability of
A decreases with instance length, the scheme A′ can solve any desired
fraction of instances by choosing a padding of appropriate length.

We claim that the following A′ is an errorless heuristic scheme for
(BH,UBH): A′((M,x,1t);N,δ) = A((M,x,1t+
1/δ�);N + �1/δ�), where
N is the length of the instance (M,x,1t). (When the input is not of
the proper form (M,x,1t), A′ rejects it.) From the definition of the
ensemble UBH, we have that for all N ,

UBH
N+
1/δ�(M,x,1t+
1/δ�) = UBH

N (M,x,1t).

On inputs from distribution UBH
N+
1/δ�, A outputs ⊥ on at most a

1/(N + �1/δ�) < δ fraction of instances, so it follows that A′ outputs
⊥ on at most a δ fraction of instances from UBH

N .

In fact, the error parameter 1/n in Proposition 3.5 can be replaced
with 1/nε for any fixed ε > 0.
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Decision Versus Search and One-Way Functions

In worst-case complexity, a search algorithm A for an NP-relation V is
required to produce, on input x, a witness w of length poly(|x|) such
that V accepts (x;w), whenever such a w exists. Abusing terminology,
we sometimes call A a search algorithm for the NP-language LV con-
sisting of all x for which such a witness w exists. Thus, when we say
“a search algorithm for L” we mean an algorithm that on input x ∈ L

outputs an NP-witness w that x is a member of L, with respect to an
implicit NP-relation V such that L = LV .

Designing search algorithms for languages in NP appears to be in
general a harder task than designing decision algorithms. An efficient
search algorithm for a language in NP immediately yields an efficient
decision algorithm for the same language. The opposite, however, is not
believed to be true in general (for instance, if one-way permutations
exist, even ones that are hard to invert in the worst case). However,
even though search algorithms may be more difficult to design than
decision algorithms for specific problems, it is well known that search
is no harder than decision for the class NP as a whole: If P = NP, then
every language in NP has an efficient (worst-case) search algorithm.

41
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In this section we revisit the question of decision versus search in the
average-case setting: If all languages in distributional NP have good-on-
average decision algorithms, do they also have good-on-average search
algorithms? The answer was answered in the affirmative by Ben-David
et al., though for reasons more subtle than in the worst-case setting.
Their argument yields search to decision connections even for interest-
ing subclasses of distributional NP. For instance, if every language in
NP is easy-on-average for decision algorithms with respect to the uni-
form distribution, then it is also easy-on-average for search algorithms
with respect to the uniform distribution. We present their argument in
Section 4.2.

From a cryptographic perspective, the most important distribu-
tional search problem in NP is the problem of inverting a candidate
one-way function. By the argument of Ben-David et al., if all problems
in distributional NP are easy-on-average, then every candidate one-way
function can be inverted on a random output. In Section 4.3 we will see
that this conclusion holds even under the weaker assumption that every
problem in NP is easy-on-average with respect to the uniform distribu-
tion. Thus, cryptographic one-way functions can exist only if there are
problems in (NP,U) that are hard-on-average for decision algorithms.

The search-to-decision reduction presented in this section yields ran-
domized search algorithms for distributional NP. We begin by defining
the types of search algorithms under consideration.

4.1 Search algorithms

By analogy with worst-case complexity, it is easiest to define search
algorithms for NP whose running time is polynomial-on-average. For
illustration, we present the definition for deterministic algorithms.

Definition 4.1.(average polynomial-time search) For an NP lan-
guage L and ensemble of distributions D, we say A is a determinis-
tic average polynomial-time search algorithm for (L,D), if for every
n and every x in L and in the support of Dn, A(x;n) outputs an
L-witness for x and there exists a constant ε such that for every n,
Ex∼Dn [tA(x;n)ε] = O(n).
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As in the case of decision algorithms, the existence of average
polynomial-time search algorithms is equivalent to the existence of
errorless heuristic search algorithms, which we define next. In the
case of randomized algorithms, the adjective “errorless” refers to the
random choice of an input from the language, and not to the choice
of random coins by the algorithm. To make this distinction clear, we
first define “errorless search” in the deterministic case, then extend
the definition to the randomized case.

Definition 4.2. (deterministic errorless search) We say A is a
deterministic errorless search scheme for (L,D), where L ∈ NP, if there
is a polynomial p such that

(1) For every n,δ > 0, and every x in the support of Dn, A(x;n,δ)
runs in time at most p(n/δ).

(2) For every n,δ > 0, and every x in L and in the sup-
port of Dn, A(x;n,δ) outputs either an L-witness w for
x or ⊥.

(3) For every n and every δ > 0, Prx∼Dn [A(x;n,δ) = ⊥] ≤ δ.

Observe that when x �∈ L, the output of the algorithm can be
arbitrary. If the algorithm outputs anything other than the special
symbol ⊥, this provides a certificate that x is not in L, as it can be
efficiently checked that the output of the algorithm is not a witness
for x.

In the case of randomized algorithms, we can distinguish differ-
ent types of errors that the algorithm makes over its randomness.
A “zero-error” randomized search algorithm is required to out-
put, for all x ∈ L, either a witness for x or ⊥ with probability
one over its randomness. The type of search algorithm we con-
sider here is allowed to make errors for certain choices of ran-
dom coins; namely, even if x ∈ L, the search algorithm is allowed
to output an incorrect witness with probability bounded away
from one.
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Definition 4.3. (randomized errorless search) We say A is a ran-
domized errorless search algorithm for (L,D), where L ∈ NP, if there is
a polynomial p such that

(1) For every n,δ > 0, A runs in time p(n/δ) and outputs either
a string w or the special symbol ⊥.

(2) For every n,δ > 0 and x ∈ L,

PrA[A(x;n,δ) outputs a witness for x or A(x;n,δ) = ⊥] > 1/2.

(3) For every n and δ > 0,

Prx∼Dn

[
PrA[A(x;n,δ) = ⊥] > 1/4

] ≤ δ.

This definition is robust with respect to the choice of constants 1
2

and 1
4 ; it would remain equivalent if 1

2 and 1
4 were replaced by any two

constants c and c′, respectively, where 0 < c′ < c < 1. Using standard
error reduction be repetition, the constants 1

2 and 1
4 can be amplified

to 1 − exp(−(n/δ)O(1)) and exp(−(n/δ)O(1)), respectively.
Finally, we define heuristic search algorithms: Such algorithms are

allowed to output incorrect witnesses on a small fraction of inputs.

Definition 4.4. (randomized heuristic search) We say A is a ran-
domized heuristic search algorithm for (L,D), where L ∈ NP, if for every
n, on input x in the support of Dn and parameter δ > 0, A runs in time
polynomial in n and 1/δ, and

Prx∼Dn

[
x ∈ L and PrA[A(x;n,δ) is not a witness for x] > 1/4

] ≤ δ.

4.2 Reducing search to decision

It is well known in worst-case complexity that the hardness of search
and decision versions of NP-complete problems are equivalent. Namely,
if any NP-complete problem has an efficient decision algorithm (on all
instances), then not only does all of NP have efficient decision algo-
rithms, but also all of NP have efficient search algorithms. The same
question can be asked for distributional NP: If every decision problem
in NP has good-on-average algorithms with respect to, say, the uniform
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distribution, does every search problem in NP also have efficient algo-
rithms with respect to the uniform distribution?

We show a result of Ben-David et al. that establishes the equivalence
of search and decision algorithms for NP with the uniform distribution.
We focus on the uniform distribution not only because it is the most
natural distribution of instances, but also because the equivalence of
search and decision complexities for the uniform distribution will be
used to establish a much more general result in Section 5.1.

Let us recall the common argument used to establish the equiva-
lence of NP-hardness for search and decision problems in the worst-case
setting, and see why this argument fails to carry over directly to the
average-case setting. Given a decision oracle for NP, and an instance x

of an NP-language L, a search algorithm for x finds a witness by doing
binary search for the lexicographically smallest w such that the oracle
answers “yes” on the NP-query:

(x,w): Is there an L-witness for x that is lexicographi-
cally at most w?

To see why this reduction is useless in the average-case setting with
respect to the uniform distribution, fix the lexicographically smallest
witness wx for every x ∈ L, and suppose that the average-case decision
oracle answers all queries correctly, except those (x,w) where the dis-
tance between w and wx in the lexicographic order is small. Then the
algorithm obtains only enough information from the oracle to recover
the first few significant bits of wx and cannot efficiently produce a wit-
ness for x.

To understand the idea of Ben-David et al., let us first consider the
special case when L is an NP language with unique witnesses. Given an
input x, the reduction attempts to recover a witness for x by making
oracle queries of the type

(x,i): Does there exist a witness w for x such that the
ith bit wi of w is 1?

for every i = 1, . . . ,m(|x|), where m(n) is the length of a witness on
inputs of length n. (Since L ∈ NP, we have that m(n) = poly(n).) Given



46 Decision Versus Search and One-Way Functions

a worst-case decision oracle for this NP language, the sequence of oracle
answers on input x ∈ L allows the search algorithm to recover all the
bits of the unique witness w. In this setting, the reduction also works
well on average: Given an average-case decision oracle that works on
a 1 − δ/m(n) fraction of inputs (x,i), where |x| = n and i ≤ m(n), the
search algorithm is able to recover witnesses (if they exist) on a 1 − δ

fraction of inputs x ∼ Un.
In general, witnesses need not be unique. However, using the isolat-

ing technique of Valiant and Vazirani [73], it is possible to (randomly)
map instances of L to instances of another NP-language L′ in such a
way that (i) the distribution of each query is dominated by uniform;
(ii) if x maps to x′, then any witness that x′ ∈ L′ is also a witness that
x ∈ L, and (iii) If x ∈ L, then x maps to an instance x′ ∈ L′ with a
unique witness with non-negligible probability.

The language L′ is defined as follows:

L′ = {(x,h, i, j) : there exists an L-witness w for x

such that wi = 1 and h|j(w) = 0j},

where i and j are numbers between 1 and m(n), and h is a hash function
mapping {0,1}m(n) to {0,1}m(n). The argument of Valiant and Vazirani
guarantees that if j is the logarithm of the number of L-witnesses for x,
there is a unique w satisfying h|j(w) = 0 with constant probability over
the choice of h. The reduction R, on input x ∼ Un, chooses a random
hash function h : {0,1}m(n) → {0,1}m(n) and queries the average-case
oracle for L′ on instances (x,h, i, j), for all i, j between 1 and m(n).

If, for any j, the sequence of answers to the queries (x,h, i, j) received
from the oracle is an L-witness for x, the search algorithm for L outputs
this witness. If no witness is found, a heuristic search algorithm outputs
an arbitrary string. An errorless algorithm outputs the special symbol
⊥ if this symbol was ever encountered as an answer to a query and an
arbitrary string otherwise.

Theorem 4.5. (Ben-David et al.) If (NP,U) ⊆ AvgBPP (respec-
tively, HeurBPP), then every problem in (NP,U) has an errorless
(respectively, heuristic) randomized search algorithm.
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Observe that the search-to-decision reduction only applies to deci-
sion algorithms that succeed on most instances. For the argument to
achieve non-trivial parameters, the fraction of instances on which the
decision algorithm fails must be smaller than 1/m(n)2.

4.3 Average-case complexity and one-way functions

If every problem is easy-on-average for the uniform ensemble, can one-
way functions exist? The above arguments show that in the case for one-
way permutations, the answer is no. Given any efficiently constructible
family of permutations fn : {0,1}n → {0,1}n solving the search problem
“Given y, find f−1

n (y)” on most y chosen from the uniform ensemble
gives the ability to invert fn(x) on a randomly chosen x ∼ Un.

In the general case, the answer is not immediately clear; to illustrate,
consider the case of a function fn : {0,1}n → {0,1}n whose image has
density 2−n/2 in {0,1}n under the uniform distribution. An average-
case inversion algorithm for fn may fail to answer any queries that
fall into the image of fn, yet be efficient with respect to the uniform
distribution by not failing on the other queries.

To rule out the existence of general one-way functions in this setting,
it is sufficient (by H̊astad et al. [38]) to show that no pseudorandom gen-
erators exist. We argue that this is the case in the errorless setting, that
is under the assumption (NP,U) ⊆ AvgBPP. Given a candidate pseu-
dorandom generator Gn : {0,1}n−1 → {0,1}n, consider the NP decision
problem “Is y in the image set of G|y|?” An errorless algorithm A for
this problem must always answer “yes” or ⊥ when the input is chosen
according to Gn(Un−1). On the other hand, A(y;n,1/4) must answer
“no” on at least a 1

4 fraction of inputs y ∼ Un, since at least a 1
2 fraction

of such inputs is outside the image of Gn, and the algorithm is allowed
to fail on no more than a 1

4 fraction of inputs. Hence A distinguishes
Gn(Un−1) from the uniform distribution, so Gn is not a pseudorandom
generator.

In the case of heuristic algorithms, this argument fails because
there is no guarantee on the behavior of A on inputs that come from
Gn(Un−1). However, a different argument can be used to rule out one-
way functions under this more restrictive assumption. H̊astad et al.
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show that if one-way functions exist, then a form of “almost one-way
permutations” exists: There is a family of strongly one-way efficiently
constructible functions fn : {0,1}n → {0,1}n such that the image of
fn has non-negligible density in {0,1}n, that is, Un(fn({0,1}n)) =∑

x∈Image(fn) Un(x) ≥ n−O(1). By choosing parameters appropriately,
every such family of functions can be inverted on a large fraction of
the image set fn({0,1}n). This gives an algorithm that inverts fn(x)
on a non-neglibible fraction of inputs x and contradicts the assumption
that fn is strongly one way.

In Chapter 5, we give a different proof of this result that bypasses
the analysis of H̊astad et al. Summarizing, and using the equivalence
of weakly and strongly one-way functions, we have the following:

Theorem 4.6. If (NP,U) ⊆ HeurBPP, then for every polynomial-time
computable family of functions fn : {0,1}n → {0,1}∗ there is a random-
ized algorithm I(y;n,δ) running in time polynomial in n and 1/δ such
that for every n and δ > 0,

Prx∼Un [I(fn(x);n,δ) ∈ f−1
n (fn(x))] ≥ 1 − δ.



5
Samplable Ensembles

The worst-case NP hardness of computational problems does not
always reflect their perceived difficulty in practice. A possible expla-
nation for this apparent disconnect is that even if a problem may be
hard to solve in the worst case, hard instances of the problem are so
difficult to generate that they are never encountered. This raises the
intriguing possibility that an NP-hard problem, for instance SAT, does
not have an efficient algorithm in the worst case, but generating a hard
instance of SAT is in itself an infeasible problem. More precisely, for
every sampler of presumably hard instances for SAT, there is an effi-
cient algorithm that solves SAT on most of the instances generated by
the sampler.

When the distribution of instances is known in advance, it makes
sense to restrict attention to a fixed sampler and design algorithms that
work well with respect to the output distribution of this sampler. This is
a viewpoint commonly adopted in average-case algorithm design, where
newer algorithms for problems such as kSAT are designed that work
well on average for larger and larger classes of distributions on inputs.
From a complexity theoretic perspective, on the other hand, one is more
interested in the inherent limitations of average-case algorithms, and it

49
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is natural to think of the sampler as chosen by an adversary that tries
to generate the hardest possible instances of the problem.

How much computational power should such a sampler of “hard”
instances be allowed? It does not make sense to give the sampler more
computational power than the solver, since the solver must have at least
sufficient time to parse the instance generated by the sampler. On the
other hand, in practice the sampler will have access to the same compu-
tational resources as the solver, so if our notion of “efficient on average”
solver is that of a polynomial-time algorithm, the sampler should also
be allowed to perform arbitrary polynomial-time computations. This
motivates the study of the distributional class (NP,PSamp).

Even though instances drawn from a samplable ensemble may be
harder than instances drawn from a computable (or from the uniform)
ensemble for a specific problem in NP, it turns out this is not the case
for the class NP as a whole: If uniformly distributed inputs are easy
for every problem in NP, then so are inputs drawn from an arbitrary
samplable ensemble.

5.1 The compressibility perspective

In Chapter 3 we showed that the distributional problem (BH,UBH) is
complete for the class (NP,PComp). We did so by giving a reduction
that maps instances of an arbitrary distributional problem (L,D) in
(NP,PComp) to instances of (BH,UBH).

Recall that the key idea of the proof was to find an efficiently com-
putable mapping C with the following properties:

(1) The map C is injective, or equivalently, the encoding com-
puted by C is uniquely decodable.

(2) When x is distributed according to D, the output C(x) is
distributed “almost” uniformly. If we think of C as a com-
pression procedure, it means that the rate of C is close to
optimal.

In general it is not clear whether an encoding C with such prop-
erties exists for arbitrary samplable ensembles. Our approach will be
to gradually relax these properties until they can be satisfied for all
samplable ensembles D.
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To relax these properties, we look at randomized encodings. First,
observe that randomness can be added to the encoding without affect-
ing the correctness of the reduction: Suppose that C is a mapping
such that when x is chosen according to the ensemble D, the image
C(x) is distributed almost uniformly. Define a random mapping C ′

that, on input x, chooses a uniformly random string r of some fixed
length and outputs the pair (C(x), r). It is evident that if the mapping
C satisfies conditions (1)–(3), then so does the mapping C ′. We use
C ′(x;r) to denote the output of C ′ on input x and randomness r; thus
C ′(x;r) = (C(x), r).

The advantage of a randomized encoding is that et allows for a nat-
ural relaxation of condition (1): Instead of requiring that the mapping
be injective, we can now consider encodings that are “almost injective”
in the sense that given C ′(x;r), the encoding needs to be uniquely
decodable only with high probability over r.

In fact, we will further weaken this requirement substantially, and
only require that C ′(x;r) be uniquely decodable with non-negligible
probability. Then a query made by the reduction is unlikely to be
uniquely decodable, but by running the reduction several times we can
expect that with high probability, at least one run of the reduction will
yield a uniquely decodable query.

To summarize, we have the following situation: We are given a
reduction that queries (BH,UBH) on several instances, and which
expects to obtain the correct answer for at least one of these instances.
We do not know which of the instances produced by the reduction is
the good one, but since BH is an NP problem, instead of asking for a
yes/no answer to the queries we can in fact ask for a witness that at
least one of the queries produced by the reduction is a “yes” instance of
BH. In fact, the search to decision reduction from Chapter 4 shows that
obtaining a witness is no harder than obtaining a membership answer
(for randomized reductions).

There is one important complication that we ignored in the last
paragraph. Many of the queries produced by the reduction may not be
uniquely decodable. Such queries may turn out to be “yes” instances of
BH even if x was a “no” instance of L, thereby certifying that a query
y is a “yes” instance of BH is not sufficient to conclude that x ∈ L.
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Indeed, we will need to certify not only that y ∈ BH, but also that y is
uniquely decodable.

5.1.1 Reductions between search problems

We now formalize the properties of the reduction from the above dis-
cussion. Since the reduction needs to access witnesses for membership
of its queries, we formalize it as a reduction between search problems.
We only consider the case when one is reducing to a problem with
respect to the uniform distribution, as this is our case of interest.

For two distributional problems (L,D) and (L′,U) in (NP,PSamp),
a randomized heuristic search reduction from (L,D) to (L′,U) is an
algorithm R that takes an input x and a parameter n and runs in time
polynomial in n, such that for every n and every x, there exists a set
Vx ⊆ SuppR(x;n) (corresponding to the “uniquely decodable” queries)
with the following properties:

(1) Disjointness: There is a polynomial p such that for every n,
Vx ⊆ {0,1}p(n) and the sets Vx are pairwise disjoint.

(2) Density: There is a polynomial q1 such that for every n and
every x in the support of Dn,

PrR[R(x;n) ∈ Vx] ≥ 1/q1(n).

(3) Uniformity: For every n and every x in the support of Dn,
the distribution of queries y ∼ R(x;n) conditioned on y ∈ Vx

is uniform.
(4) Domination: There is a polynomial q2 such that for every n

and every x,

Dn(x) ≤ q2(n) · Up(n)(Vx).

(5) Certifiability: There exists a polynomial-time algorithm Q

such that for every n, if x ∈ L and y ∈ Vx, then for every
L′-witness w for y, Q(w) is an L-witness for x.

A randomized search reduction is weaker than a reduction between
decision problems in that it is only guaranteed to work with small
probability, and only on “yes” instances. However, if we are given a
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randomized search algorithm for L′, it gives a randomized search algo-
rithm for L as well, since et allows us to recover witnesses for L from
witnesses for L′. If we run the reduction several times, the probability
we hit a witness for L′ becomes exponentially close to one, so the search
algorithm for L can be made to work with very high probability on all
instances.

Claim 5.1. If there is a randomized search reduction from (L,D) to
(L′,U), and (L′,U) has a randomized heuristic search scheme, then
(L,D) has a randomized heuristic search scheme.

Proof. Let A′ be a randomized heuristic search scheme for (L′,U). The
search scheme A for (L,D) will run the reduction N times, producing
N search queries for A′. For each witness wi returned by A′, A will
check whether wi yields a witness for L.

Specifically, on input x and parameters n and δ, A does the
following:

(1) Run R(x;n) independently N = 16q1(n) times, producing
queries y1, . . . ,yN .

(2) Compute wi = A′(yi;p(n), δ/2q2(n)) for every i.
(3) If, for some i, Q(wi) is an L-witness for x, output Q(wi) (and

otherwise output an arbitrary string).

Assume x ∈ L, and denote by F the set of all y on which A′(y; ·)
behaves incorrectly. Specifically, let F be the set of all y such that y ∈ L′

but A′(y;p(n), δ/2q2(n)) fails to return a witness of y with probability 1
4

or more. Since A′ is a heuristic scheme for L′, we have that Up(n)(F ) ≤
δ/2q2(n).

Let B be the set of all x ∈ L ∩ SuppDn for which a large portion
of the uniquely decodable queries Vx are “bad” for A′ in the sense that
they fall inside F . Specifically, define B as the set of all x such that

Up(n)(Vx ∩ F ) ≥ Up(n)(Vx)/2.

The set B cannot have much weight according to Dn, since every
x ∈ B is “responsible” for many bad queries in Vx ∩ F , and if there
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were many such queries then F would be large. In particular,

Dn(B) =
∑
x∈B

Dn(x)

≤
∑
x∈B

q2(n)Up(n)(Vx) (by domination)

≤
∑
x∈B

2q2(n)Up(n)(Vx ∩ F )

≤ 2q2(n)Up(n)(F ) ≤ δ (by disjointness).

Now fix x �∈ B, and consider one of the queries yi generated by A

in step (1). We have that

Pr[Q(wi) is an L-witness for x]

≥ Pr[yi ∈ Vx and wi is an L′-witness for yi] (by certifiability)

≥ Pr[yi ∈ Vx − F and wi is an L′-witness for yi]

= Pr[yi ∈ Vx] · Pr[yi ∈ Vx − F | yi ∈ Vx]

× Pr[wi is an L′-witness for yi | yi ∈ Vx − F ]

≥ 1
q1(n)

· 1
2

· 1
4

=
1

8q1(n)
,

by density, uniformity, and the definition of F . By the choice of N , it
follows that at least one of Q(w1), . . . ,Q(wN ) is an L-witness for x with
probability 1

2 .

This claim shows that randomized search reductions can be used
to prove completeness results for HeurBPP. However, the proof of the
claim does not extend to the class AvgBPP, the reason being that
the domination condition is too weak. For heuristic algorithms, this
condition guarantees that the algorithm A′ for (L′,U) will provide wit-
nesses to most of the “yes” instances of (L,D). The “evidence” that an
instance of (L,D) is a “no” instance is that no such witness is found.

In the case of errorless algorithms, however, we need to certify “no”
instances of (L,D). It is reasonable to attempt the following: First,
run the reduction several times to estimate the fraction of queries that
A′ answers by ⊥. If this fraction turns out too large, this is evidence
that A′ is unable to provide witnesses reliably for this instance, so
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we answer ⊥. Otherwise, we look for a witness and answer accordingly.
Unfortunately, the definition is insufficient to guarantee that ⊥ will not
be answered too often, since it may be that the distribution of queries
is skewed in such a way that, whenever a query for x falls outside Vx,
the answer to this query is very likely to be ⊥.

5.1.2 Compressing arbitrary samplable distributions

Let S be a polynomial-time sampler that on input n runs in time m(n),
where m is some polynomial and Dn denotes the distribution of the
random variable S(n). As for computable distributions, our goal is to
extract a sufficient amount of randomness from S(n) so that the output
of the extraction procedure is dominated by the uniform distribution.

To describe the approach, it is convenient to begin by consider-
ing the problem for certain restricted classes of distributions Dn, then
gradually remove the restrictions until all samplable distributions are
encompassed.

We begin by considering the case of flat distributions: We say that
Dn is kn-flat if for each x in the support of Dn, Dn(x) = 2−kn . Flat
distributions are convenient to consider because their randomness can
be extracted via the Leftover Hash Lemma: In particular, when x is
chosen from a kn-flat distribution and h is a random hash function
from {0,1}<m(n) into {0,1}kn+7, the output of the mapping Cn(x;h) =
(h,h(x)) is dominated by the uniform distribution. It is not difficult
to check that Cn satisfies the properties of randomized heuristic search
reductions: The “uniquely decodable” strings Vx are those pairs (h,y) for
which h−1(y) = {x}. By the choice of parameters, for every x in the sup-
port of Dn, (h,h(x)) ∈ Vx for all but a small fraction of possible h, giving
both density and domination. (Uniformity and certifiability are trivial.)

Now we consider a small but important generalization of flat distri-
butions: Instead of requiring that all samples in the support of Dn have
the same probability, we allow their probabilities to vary, but require that
these probabilities be efficiently computable in the following sense: There
is an algorithm that on input x and parameter n runs in time polyno-
mial in n and computes the approximate entropy of x, which is the value

kn(x) = 
− log2 Dn(x)� = m(n) − �log2 #{r : S(n;r) = x}�.
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Notice that kn(x) is an integer between 0 and m(n). This scenario sub-
sumes the previous one, where kn(x) was the same for all x in the
support of Dn. The reasoning for flat distributions extends to this sce-
nario, as long as we tailor the length of the output of the hash function
to depend on the entropy k(x). Namely, the mapping Cn(x;h) = (h,

h|kn(x)+7(x)), where h is a function mapping {0,1}<m(n) to {0,1}m(n)+7

satisfies the properties of randomized heuristic search reductions.
For arbitrary S, kn(x) could be difficult to compute and it is

not clear if the approach of compressing samples via hashing can be
extended. One idea is for the reduction to attempt all possible values for
kn(x), and declare Vx to be the subset of encodings for which the guess
was correct. However, it is now possible that strings of higher entropy
(lower probability) than x become possible decodings of (h,h(x)): There
may be many such strings, and it is likely that some of them collide
with x under h.

The solution is to append the encoding Cn(x) of x with a “cer-
tificate” that the entropy of x is not too high, namely that kn(x) ≤ k.
This roughly amounts to certifying that the size of the set {r : S(n;r) =
x} is at least 2m(n)−kn . The certificate of this statement will be
randomized: We ask to see a string r such that S(r) = x and g(r) = 0
for a random hash function g that is approximately 2kn-to-one. Such a
certificate is only approximately correct, but this is sufficient to guar-
antee that with constant probability, for a random h, h(x) has a unique
pre-image for h mapping {0,1}<m(n) to {0,1}kn+7.

5.1.3 The construction

Putting everything together, the encoding for x chosen from distribu-
tion Dn is

Cn(x;h,g,k) = (h(x),h,g,k),

where k is a number between 0 and m(n), h is a hash function mapping
{0,1}<m(n) to {0,1}k+7, and g is a hash function mapping {0,1}m(n)

to {0,1}m(n)−k−4. (In reality, h maps to {0,1}m(n)+7 and g maps to
{0,1}m(n)−4 and we use the truncated versions h|k+7 and g|m(n)−k−4,
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but for simplicity of notation we will not make this distinction.) Let
p(n) denote the output length of Cn.

The “uniquely decodable” encodings are defined as follows:

Vx is the set of all (y,h,g,k) such that k = kn(x), h(x) =
y, and

(1) There is an r such that S(n;r) = x and g(r) = 0.

(2) If h(S(n;r)) = y and g(r) = 0, then S(n;r) = x.

The reduction R maps instance (x;n) to instance (h(x),h,g,k) of
the following NP-language L′:

(y,h,g,k) ∈ L′ if there exists an r of length < m(n)
such that S(n;r) ∈ L and h(S(n;r)) = y and g(r) =
0m(n)−k−4.

Observe that a certificate that (y,h,g,k) ∈ L′ in particular contains a
certificate that S(n;r) ∈ L, so under appropriate conditions witnesses
for membership in L can be extracted from the corresponding witnesses
for L′.

Theorem 5.2. (Impagliazzo and Levin) (L,D) reduces to (L′,U)
via a randomized heuristic search reduction.

Combining this result with the completeness of (BH,UBH) for prob-
lems in (NP,U), which follows from Cook’s reduction (or as a special
case of Theorem 3.3), and also using the search-to-decision equivalence
of Theorem 4.5, we obtain the following corollary.

Corollary 5.3. If (BH,UBH) ∈ HeurBPP, then (NP,PSamp) ⊆
HeurBPP.

Proof of Theorem 5.2. We show that the reduction R satisfies the five
conditions for randomized heuristic search reductions. Let us fix n.
Disjointness, uniformity, and certifiability follow from the definitions,
so we focus on density and closeness.
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Let kn(x) = 
− log2 Dn(x)� = m(n) − �log2|{r : S(n;r) = x}|�. Let
p(n) denote the length of the output of the reduction when x is chosen
from Dn.

Density: We show that Prh,g[(h(x),h,g,k) ∈ Vx] is lower bounded by
a constant conditioned on k = kn(x). Since k = kn(x) with probability
at least 1/m(n), it will follow that

PrR[(h(x),h,g,k) ∈ Vx] = Ω(1/m(n)).

We first show that with probability 7
8 , there exists an r such that

S(n;r) = x and g(r) = 0. Observe that the number of rs satisfying
S(n;r) = x is at least 2m(n)−k−1. Since the range of g is {0,1}m(n)−k−4,
in expectation there are at least eight rs such that S(n;r) = x and
g(r) = 0. By the pairwise independence of g, at least one r satisfies
these conditions with probability 7

8 .
We now show that there are at most 1

8 fraction of pairs h,g such
that h(S(n;r)) = y and g(r) = 0 for some r with S(n;r) �= x. Indeed,

Prh,g[∃r : S(n;r) �= x and h(S(n;r)) = h(x) and g(r) = 0]

≤
∑

r:S(n;r) 	=x

Prh[h(S(n;r)) = h(x)]Prg[g(r) = 0]

≤
∑

r∈{0,1}<m(n)

2−k−72−m(n)+k+4 = 1/8.

It follows that each of the conditions (1) and (2) in the definition of Vx

is satisfied with probability 7
8 separately, so that

Prh,g[(h(x),h,g,k) ∈ Vx | k = kn(x)] ≥ 3/4.

Domination: Observe that for a given n, a random instance of UBH
p(n)

is a 4-tuple of the correct form (y,h,g,k) with probability at least
1/poly(p(n)). Therefore,

UBH
p(n)(Vx) = Pry,g,h,k[(y,h,g,k) ∈ Vx] · 1/poly(p(n))

≥ Prh,g[(h(x),h,g,k) ∈ Vx | k = kn(x)]
Pry[y = h(x) | k = kn(x)]Prk[k = kn(x)] · 1/poly(p(n))

≥ 3/4 · 2−kn(x)−7 · 1/(m(n)poly(p(n)))
= Ω(Dn(x)/m(n)poly(p(n))).
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An important example of a problem in (NP,PSamp) is the prob-
lem of inverting a supposed one-way function fn : {0,1}n → {0,1}∗: The
question of finding an inverse f−1

n (y) is an NP question, and the distri-
bution ensemble on which the function ought to be inverted is {fn(Un)}.
Therefore, if (BH,UBH) has a heuristic scheme, then no one-way func-
tions exist.

5.2 The invertibility perspective

In this section we present a different proof that (NP,PSamp) is no
harder on average than (NP,U) for randomized algorithms. This proof
works for heuristic as well as errorless algorithms.

Ignoring efficiency considerations for the moment, given an NP lan-
guage L and a polynomial-time sampler S, the distributional problem
“Compute f on input x”, where x ∼ S(n;Um(n)), can be solved first
by sampling a random r ∼ Um(n) conditioned on S(n;r) = x, and then
by solving the distributional problem “Compute f(S(r)) on input r.”
Observe that given an algorithm that solves the latter problem well on
average with respect to the uniform ensemble yields an algorithm for
the original problem with respect to the ensemble S(n;Um(n)).

The difficulty, of course, is in efficiently carrying out the step of
sampling a random r conditioned on S(n;r) = x. In a general setting
this does not seem possible, as S(n;r) may be a one-way function of
r, in which case finding any, let alone a random preimage of x, is an
impossible task.

However, if all of (NP,U) has efficient on average algorithms, by
Theorem 4.6 there are no one-way functions. Impagliazzo and Luby [43]
show that if there are no one-way functions then there are no distri-
butionally one-way functions: Given any efficiently computable family
of functions fn : {0,1}n → {0,1}∗, for most y it is possible to efficiently
sample an x such that fn(x) = y and the distribution of x conditioned
on fn(x) = y is close to uniform. More precisely, there exists a (ran-
domized) algorithm I running in time polynomial in n and 1/δ such
that the statistical distance between the distributions (x,fn(x)) and
(I(fn(x);n,δ),fn(x)) is at most δ. In particular, given an input x ∼



60 Samplable Ensembles

S(n;Um(n)), it is possible to sample an almost uniform r such that
S(n;r) = x.

Theorem 5.4. (Impagliazzo and Levin) If (NP,U) ⊆ AvgZPP
(respectively, HeurBPP), then (NP,PSamp) ⊆ AvgZPP (respectively,
HeurBPP).

Proof. Consider an arbitrary problem (L,D) ∈ (NP,PSamp). Let S be
the polynomial-time sampler for D. Assume without loss of general-
ity that on input n, S uses exactly m(n) random bits and that m is
an injective function. Under the assumption of the theorem, by Theo-
rem 4.6 and the result of Impagliazzo and Luby, there is an algorithm
I running in time polynomial in n and 1/δ and such that for every n,
the statistical distance between the distributions

{(r,S(r)) : r ∈ {0,1}m(n)} and {(I(S(r)),S(r)) : r ∈ {0,1}m(n)} (5.1)

is at most δ/3. (For simplicity of notation, we omit the parameters
n and δ in parts of the proof.) Let A be a heuristic scheme for the
distributional problem (L ◦ S,U), where L ◦ S is the NP language {r :
S(r) is a yes instance of L}.

We show that the algorithm

B(x;n,δ) = A(I(x);m(n), δ/3)

is a heuristic scheme for (L,D). Observe that if A is errorless then B is
also errorless (since I can be made errorless by checking that S maps
its input to its output, and outputing ⊥ if this is not the case). Now,
it is sufficient to show that

Prx∼S(n;Um(n))[B(x) = L(x)] = Prr∼Um(n) [B(S(r)) = L(S(r))] ≥ 1 − δ.

We relate the probability of the event B(S(r)) = L(S(r)) to the prob-
ability of the event A(r) = L(S(r)). By indistinguishability (5.1), for
any event E, the probabilities of E(r) and E(I(S(r))) when r ∼ Um(n)
can differ by at most δ/3, so in particular

Prr∼Um(n) [A(r) = L(S(r))]

≤ Prr∼Um(n) [A(I(S(r))) = L(S(I(S(r))))] + δ/3

= Prr∼Um(n) [B(S(r)) = L(S(I(S(r))))] + δ/3.
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Applying indistinguishability (5.1) again, the distributions (S(r),S(r))
and (S(I(S(r))),S(r)) are δ/3 statistically close, so in particular
Prr[S(r) �= S(I(S(r)))] < δ/3 and

Prr∼Um(n) [B(S(r)) = L(S(I(S(r))))]

≤ Prr∼Um(n) [B(S(r)) = L(S(I(S(r)))) and S(r) = S(I(S(r)))]

+ Prr∼Um(n) [S(r) �= S(I(S(r)))]

≤ Prr∼Um(n) [B(S(r)) = L(S(r))] + δ/3.

Putting the last two equations together, we obtain

Prr∼Um(n) [B(S(r)) = L(S(r))]

≥ Prr∼Um(n) [A(r) = L(S(r))] − 2δ/3 ≥ 1 − δ.

Notice that the assumption that (NP,U) has good on average algo-
rithms was used twice in the proof: Once to invert the sampler S and
once to solve L ◦ S on the uniform distribution. In other words, given
an average-case oracle for (BH,UBH), to obtain an algorithm for a prob-
lem in (NP,PSamp) one needs to place two rounds of queries to the
oracle. The first round of queries is used to obtain a pre-image r of
x under S, and the second round (in fact, a single query) is used to
solve L ◦ S on input r. In contrast, Theorem 5.2 solves problems in
(NP,PSamp) using a single round of oracle queries.



6
Hardness Amplification

Generally speaking, the goal of hardness amplification is to start from
a problem that is known (or assumed) to be hard on average in a
weak sense (i.e., every efficient algorithm has a noticeable probability
of making a mistake on a random input) and to define a related new
problem that is hard on average in the strongest possible sense (i.e.,
no efficient algorithm can solve the problem noticeably better than by
guessing a solution at random).

6.1 Yao’s XOR Lemma

For decision problems, Yao’s XOR Lemma [76] is a very powerful
result on amplification of hardnes. In the XOR Lemma, we start
from a Boolean function f : {0,1}n → {0,1} and define a new func-
tion f⊕k(x1, . . . ,xk) := f(x1) ⊕ ·· · ⊕ f(xk), and the lemma says that if
every circuit of size ≤ S makes at least a δ fraction of errors in com-
puting f(x) for a random x, then every circuit of size ≤ S · poly(δε/k)
makes at least a 1/2 − ε fraction of errors in computing f⊕k, where ε

is roughly Ω((1 − δ)k).
Various proofs of the XOR Lemma are known [16, 34, 41, 44, 54]. In

this section we describe Impagliazzo’s proof [41] because it is based

62
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on a tool, Impagliazzo’s “hard core distribution” theorem, that will be
very useful later.

For simplicity, we will restrict ourselves to results in the non-uniform
(circuit complexity) setting. The following definition will be useful.

Definition 6.1. We say that a Boolean function f : {0,1}n → {0,1} is
(S,δ)-hard with respect to a distribution D if, for every circuit C of
size ≤ S, we have

Prx∼D[f(x) �= C(x)] > δ.

To relate this definition to our previous definitions, observe that
(L,{Dn}) ∈ Heurδ(n)SIZE(S(n)) if and only if, for every n, Ln is not
(S(n), δ(n))-hard with respect to Dn, where Ln : {0,1}n → {0,1} is the
characteristic function of the set L ∩ {0,1}n.

Impagliazzo [41] proves that, if a Boolean function is “mildly” hard
on average with respect to the uniform distribution, then there is a
large set of inputs such that the function is “very” hard on average on
inputs coming from that set.

Lemma 6.2. (Impagliazzo) Let f : {0,1}n → {0,1} be a (S,δ)-hard
function with respect to the uniform distribution. Then, for every ε,
there is a set H ⊆ {0,1}n of size δ2n such that f is (S · poly(ε,δ), 1

2 − ε)-
hard with respect to the uniform distribution over H.

We can now present Impagliazzo’s proof of the XOR Lemma.

Theorem 6.3. (XOR Lemma, Impagliazzo’s version) Let f :
{0,1}n → {0,1} be (S,δ)-hard with respect to the uniform distribution,
let k be an integer, and define g : {0,1}nk → {0,1} as

g(x1, . . . ,xk) := f(x1) ⊕ ·· · ⊕ f(xk) .

Then, for every ε > 0, g is (S · poly(ε,δ), 1
2 − ε − (1 − δ)k)-hard with

respect to the uniform distribution.

Let H be a set as in Lemma 6.2. The main idea in the proof is
that if we are a small circuit, then our chances of computing f(x) for
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x ∼ H are about the same as our chances of guessing the value of a
random coin flip. Now, we are given x1, . . . ,xk and we need to compute
f(x1) ⊕ ·· · ⊕ f(xk); if some xj is in H, then, intuitively, our chances
of correctly doing the computation are about the same as our chances
of computing f(x1) ⊕ ·· · ⊕ f(xj−1) ⊕ b ⊕ f(xj+1) · · · ⊕ f(xk), where b

is a random bit. A random bit XOR-ed with other independent values
is also a random bit, and so, in that case, we will be correct only
with probability 1

2 . So our probability of being correct is at most 1
2

plus (1 − δ)k (the probability that none of the xj is in H) plus ε (to
account for the difference between our ability to guess a random bit
and our ability to compute f(x) for x ∼ H).

Even though this proof sketch may look completely unsound, it
leads to a surprisingly simple formal proof, that we present below.

Proof of Theorem 6.3. Apply Lemma 6.2, and let H be the set of size
δ2n such that f is (S · poly(ε,δ), 1

2 − ε)-hard with respect to the uni-
form distribution over H.

Let C be a circuit of size S′ such that

Pr[C(x1, . . . ,xk) = f(x1) ⊕ ·· · ⊕ f(xk)] >
1
2

+ (1 − δ)k + ε.

Let D be the uniform distribution over k-tuples (x1, . . . ,xk) ∈ ({0,1}n)k

conditioned on at least one xj being an element of H. By conditioning
on the event that some xj ∈ H, we obtain

Pr(x1,...,xk)∼D[C(x1, . . . ,xk) = f(x1) ⊕ ·· · ⊕ f(xk)] >
1
2

+ ε.

We can see the process of picking a k-tuple (x1, . . . ,xk) ∼ D as first
picking a non-empty subset S ⊆ [k] with an appropriate distribution,
then, for each j ∈ S, picking xj uniformly from H, and, for each j �∈ S,
picking xj uniformly from {0,1}n − H, so the above expression can be
rewritten as

ES 	=∅

[
Prx1,...,xk

[C(x1, . . . ,xk) = f(x1) ⊕ ·· · ⊕ f(xk)]
]

>
1
2

+ ε.

Fix the set S that maximizes the outside expectation, and let i be the
first element of S. Then we have

Prx1,...,xk
[C(x1, . . . ,xk) = f(x1) ⊕ ·· · ⊕ f(xk)] >

1
2

+ ε
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or equivalently

Ex1,...,xi−1,xi+1,...,xn

[
Prxi∼H [C(x1, . . . ,xk) = f(x1) ⊕ ·· · ⊕ f(xk)]

]
>

1
2

+ ε

Let aj for j �= i be the assignment for xj that maximizes the above
expectation. Then we have

Prxi∼H [C(a1, . . . ,ai−1,xi,ai+1, . . . ,ak)

= f(a1) ⊕ ·· · ⊕ f(ai−1) ⊕ f(xi) ⊕ f(ai+1) ⊕ ·· · ⊕ f(ak)] >
1
2

+ ε,

which we can rearrange as

Prx∼H [C(a1, . . . ,ai−1,xi,ai+1, . . . ,ak)

⊕ f(a1) ⊕ ·· · ⊕ f(ai−1) ⊕ f(ai+1) ⊕ ·· · ⊕ f(ak) = f(x)] >
1
2

+ ε.

Note that the left-hand side expression above can be computed by a
circuit of size at most S′ + 1, showing that f is not (S′ + 1, 1

2 − ε)-
hard with respect to the uniform distribution over H. We can choose
S′ = S · poly(ε,δ) in a way that contradicts our assumption about f

being (S,δ)-hard with respect to Un, and so we conclude that g is
indeed (S · poly(ε,δ), 1

2 − ε − (1 − δ)k)-hard with respect to the uni-
form distribution.

6.2 O’Donnell’s approach

The XOR Lemma does not allow us to prove results of the form “if
there is a midly hard-on-average distributional problem in NP with
respect to the uniform distribution, then there is a very hard-on-average
distributional problem in NP with respect to the uniform distribution.”
The difficulty is that if L is (the characteristic function of) a problem
in NP, then, given x,y, it is not clear that the problem of computing
L(x) ⊕ L(y) is still in NP. Indeed, if L is NP-complete, then computing
L(x) ⊕ L(y) is not in NP unless NP = coNP.

We note, however, that if g : {0,1}k → {0,1} is a monotone function,
and L is in NP, then computing g(L(x1), . . . ,L(xk)) given (x1, . . . ,xk)
is a problem in NP. We may then ask whether there are monotone
functions g such that, if L is mildly hard on average, then computing
g(L(x1), . . . ,L(xk)) is very hard on average.
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To address this question, we return to the informal proof of the XOR
Lemma outlined in the previous section. Let f : {0,1}n → {0,1} be a
(S,δ)-hard function, and let H be a set as in Impagliazzo’s Lemma.
Define the probabilistic function F such that F (x) = f(x) for x �∈ H

and F (x) is a random bit for x ∈ H. Our informal proof of the XOR
Lemma was that, for a small circuit, computing F (x1) ⊕ ·· · ⊕ F (xk)
given (x1, . . . ,xk) is about as hard as computing f(x1) ⊕ ·· ·f(xk) given
(x1, . . . ,xk); no algorithm, however, can solve the former problem with
probability larger than 1

2 + (1 − δ)k, for information-theoretic reasons,
and so this is also an approximate upper bound to the probability that
a small circuit correctly solves the latter problem.

O’Donnell [61] shows that there are monotone functions g such that
computing g(F (x1), . . . ,F (xk)) given (x1, . . . ,xk) cannot be done with
probability larger than 1/2 + ε, provided k is at least poly(1/ε,1/δ),
and a similar upper bound holds for the probability that a small circuit
can compute g(f(x1), . . . ,f(xk)) given (x1, . . . ,xk).

Let us start with a formalization of the information-theoretic result.
For a function f : {0,1}n → {0,1} and a set H ⊆ {0,1}n, we denote
by FH a random variable distributed over functions {0,1}n → {0,1},
defined so that FH(x) is a random bit for x ∈ H and FH(x) = f(x) for
x �∈ H. We say that a Boolean function is balanced if Pr[f(Un) = 1] = 1

2 .

Lemma 6.4. (O’Donnell) For every ε > 0, δ > 0 there is a k =
poly(1/ε,1/δ) and a monotone function g : {0,1}k → {0,1}, computable
by a circuit of size O(k), such that for every balanced function f :
{0,1}n → {0,1}, every subset H ⊆ {0,1}n of size δ2n and every func-
tion A : {0,1}kn → {0,1} we have

Prx1,...,xk
[A(x1, . . . ,xk) = g(FH(x1), . . . ,FH(xk))] ≤ 1

2
+ ε,

where different occurrences of FH in the above expression are sampled
independendently.

The proof of the lemma is not easy, and we refer the reader to [61] for
more details. Let us see how to use the lemma for the sake of hardness
amplification. We need to formalize the notion of g(FH(x1), . . . ,FH(xk))
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and g(f(x1), . . . ,f(xk)) being similarly hard to compute for a small
circuit. Specifically, we prove the following result.

Lemma 6.5. Let f : {0,1}n → {0,1} be a (S,δ)-hard function. Then,
for every α > 0, there is a set H of size δ2n such that for every k, and
every function g : {0,1}k → {0,1} computable by a circuit of size at
most s, and for every circuit A of size at most S · poly(α,δ) − s, we have

Pr[A(x1, . . . ,xk) = g(f(x1), . . . ,f(xk))]

≤ Pr[A(x1, . . . ,xk) = g(FH(x1), . . . ,FH(xk))] + k · αδ.

In order to sketch the proof of Lemma 6.5, we first need to intro-
duce the notion of computational indistinguishability. We say that two
distributions X,Y ranging over {0,1}n are (S,ε)-indistinguishable if for
every circuit C of size ≤ S we have∣∣Pr[C(X) = 1] − Pr[C(Y ) = 1]

∣∣ ≤ ε.

Proof sketch of Lemma 6.5. Given a (S,δ)-hard function f , we first
find a set H as in Impagliazzo’s Lemma, such that f is (S′,1/2 − α)-
hard with respect to the uniform distribution on H, where S′ = S ·
poly(α,δ). Then we consider the distributions (x,f(x)) and (x,FH(x)),
for uniformly distributed x, and we prove that they are (S′ − O(1),αδ)-
indistinguishable. From this point, it is not hard to show, using a hybrid
argument, that the distributions

(x1, . . . ,xk,f(x1), . . . ,f(xk))

and

(x1, . . . ,xk,FH(x1), . . . ,FH(xk))

are (S′ − O(1),kαδ)-indistinguishable. Suppose now that g is a function
computable in size s and that A is a circuit of size S′′ such that

Pr[A(x1, . . . ,xk) = g(f(x1), . . . ,f(xk))]

> Pr[A(x1, . . . ,xk) = g(FH(x1), . . . ,FH(xk))] + k · αδ.

Define the circuit

C(x1, . . . ,xk, b1, . . . , bk) = A(x1, . . . ,xk) ⊕ g(b1, . . . , bk)
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of size S′′ + s + O(1) showing that the above two distributions are not
(S′′ + s + O(1),kαδ)-indistinguishable. It is possible to choose S′′ =
S · poly(α,δ) so that this is a contradiction.

Lemma 6.5, together with Lemma 6.4, is sufficient to provide ampli-
fication of hardness within NP for problems whose characteristic func-
tion is balanced.

Lemma 6.6. Let f : {0,1}n → {0,1} be a balanced (S,δ)-hard func-
tion. Then for every ε there is a k = poly(1/ε,1/δ) and a monotone
g : {0,1}k → {0,1} computable by a circuit of size O(k) such that if we
define

h(x1, . . . ,xk) = g(f(x1), . . . ,f(xk)),

we have that h is (S · poly(ε,δ),1/2 − ε)-hard.

Proof. Apply Lemma 6.4 and find a k = poly(1/ε,1/δ) and a function
g : {0,1}k → {0,1} such that for every set H of size δ2n and every A

we have

Prx1,...,xk
[A(x1, . . . ,xk) = g(FH(x1), . . . ,FH(xk))] ≤ 1

2
+

ε

2

Apply Lemma 6.5 with α = εδ/2k to find a set H such that for every
circuit A of size at most S · poly(α,δ) − s = S · poly(ε,δ) we have

Pr[A(x1, . . . ,xk) = g(f(x1), . . . ,f(xk))]

≤ Pr[A(x1, . . . ,xk) = g(FH(x1), . . . ,FH(xk))] +
ε

2
.

Combining the two expressions, we have that for every circuit A of size
at most S · poly(ε,δ)

Pr[A(x1, . . . ,xk) = g(f(x1), . . . ,f(xk))] ≤ 1
2

+ ε.

Some extra work is needed to remove the assumption that the fun-
tion is balanced and to optimize the constants. O’Donnell final result
is the following.
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Theorem 6.7. (O’Donnell) Suppose that for every language L in
NP we have (L,U) ∈ Heur1/2−1/n.33P/poly. Then for every polynomial
p and for every language L in NP we have

(L,U) ∈ Heur1/p(n)P/poly.

The result was improved by Healy et al. [40], but only for balanced
languages (i.e., for languages whose characteristic function is balanced
on every input length).

Theorem 6.8. (Healy et al.) Suppose that for every balanced
language L in NP there is a polynomial p such that (L,U) ∈
Heur1/2−1/p(n)P/poly. Then for every polynomial p and for every bal-
anced language L in NP we have

(L,U) ∈ Heur1/p(n)P/poly.

Trevisan [70,72] proves weaker results for the uniform HeurBPTIME
classes. Specifically, Trevisan proves that there is a constant c such
that if (NP,U) ⊆ Heur1/2−1/(logn)cBPP then, for every polynomial p,
(NP,U) ∈ Heur1/p(n)BPP.

Indeed, the actual result is slightly stronger.

Theorem 6.9. (Trevisan) Suppose that for every language L in
NP there is a polynomial time randomized algorithm A such that for
every n

Prx∼Un;coin tosses of A[A(x) �= L(x)] ≤ 1
2

+
1

(logn)c
.

Then, for every polynomial p, (NP,U) ∈ Heur1/p(n)BPP.

Note that the assumption in the theorem is (possibly) weaker than
(NP,U) ⊆ Heur1/2−1/(logn)cBPP, which requires

Prx∼Un

[
Prcoin tosses of A[A(x) �= L(x)] >

1
4

]
≤ 1

2
+

1
(logn)c

.



7
Worst-Case Versus Average-Case

and Cryptography

The results on hardness amplification from Chapter 6 indicate that
the notion of average-case hardness is very robust with respect to the
hardness parameter. Namely, it is just as hard to solve hard problems
in (NP,U) on slightly more than half their inputs as it is to solve them
on a 1 − 1/poly(n) fraction of inputs. It is reasonable to ask whether
this connection can be pushed to the extreme: Is it the case that solving
problems in (NP,U) on slightly more than half their inputs is no easier
than solving them on all inputs? In other words, are there problems in
(NP,U) whose tractability would imply that NP ⊆ BPP?

A related and fundamental question in cryptography is whether the
security of various cryptographic primitives can be reduced to a reason-
able worst-case complexity theoretic assumption, such as NP �⊆ BPP.
This question has not been settled yet, and there is contrasting evidence
about the possibility of such a connection. In this section we review and
explain several results related to this topic. As we shall see, at the heart
of the question of basing cryptography on a worst-case assumption is
the connection between worst-case and average-case complexity.

Various cryptographic tasks require cryptographic primitives of
seemingly different strength. Here, we focus on the worst-case
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assumptions necessary for the existence of one-way functions (equiv-
alently, symmetric key cryptography) and public key encryption.

Since under the assumption NP ⊆ BPP no one-way functions exist,
a worst-case assumption necessary for the existence of one-way func-
tions must be at least as strong as NP �⊆ BPP. Is this assumption suf-
ficient for the existence of one-way functions? If it is not, is it possible
to base the existence of one-way functions on a possibly relaxed, but
still reasonable, worst-case complexity assumption?

Assuming the worst-case intractability of certain promise problems
on lattices, it is possible to obtain provably secure constructions of
cryptographic one-way functions, as well as seemingly stronger primi-
tives such as collision-resistant hash functions and public key encryp-
tion schemes. However, all known worst-case intractable problems that
yield secure cryptographic primitives are both in NP and coNP, and
are thus unlikely to be NP hard.1

At this point, it is an open question whether the average-case
tractability of (NP,U) would imply that NP ⊆ BPP, and whether any
form of cryptography can be based on the assumption NP �⊆ BPP. In
this section we review evidence that points to some difficulties in estab-
lishing such connections.

7.1 Worst-case to average-case reductions

What do we mean when we say that the existence of one-way functions
can be based on the assumption NP �⊆ BPP? The most general inter-
pretation would be to say that there exists a proof of the statement
“NP �⊆ BPP implies that one-way functions exist.” At this point no
such proof is known; however, it is difficult to rule out the existence
of a proof, for that would imply that either “NP �⊆ BPP” or “one-way
functions exist” would not be provable. One plausible interpretation of
the claim that the existence of one-way functions requires assumptions
stronger than NP ⊆ BPP would be to say that any “plausible” way
to obtain a worst-case algorithm for SAT (or some other NP-complete

1 The worst-case assumption that statistical zero knowledge contains intractable problems,
which seems to be much stronger than NP 	⊆ BPP, is known to imply the existence of
infinitely often one-way functions, a primitive object seemingly weaker than the one-way
function [62]. This primitive does not appear to have any useful applications.
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problem) from an imagined inverter for the universal one-way function
fails, or at least violates some reasonable assumption.

To see what we mean by “plausible,” let us see how a possible proof
of the claim might go. Generally such proofs are carried out by reduc-
tion; namely, there is an efficiently computable procedure that maps
candidate inverters for the one-way function to algorithms for SAT.
Moreover, the reductions typically use the one-way function inverter
as a black box only. Such a reduction can be modeled as an efficient
oracle procedure R that, when given oracle access to an average-case
inverter for the one-way function, solves SAT correctly on almost all
instances. With this in mind, the notion that one-way functions can be
based on the assumption “NP �⊆ BPP” can be liberally interpreted as
the existence of a reduction R of the form described above.

We would also like to consider the possibility that one-way functions
can be based on stronger assumptions. This motivates the notion of a
worst-case to average-case reduction. First, we define the notion of an
“inversion oracle” for a one-way function.

Definition 7.1. (inversion oracle) Let {fn : {0,1}n → {0,1}∗} be a
family of functions. An inversion oracle for {fn} with error δ(n) is a
family of (possibly randomized) functions {In : {0,1}∗ → {0,1}n} such
that for all n,

Prx∼Un,In [In(fn(x)) �∈ f−1
n (fn(x))] ≤ δ(n).

Thus, if there is an efficiently computable inversion oracle for f with
inverse polynomial error, then f is not strongly one way.

Definition 7.2. (worst-case to average-case reduction) A worst-
case to average-case reduction from a language L to inverting a family
of functions {fn} with average-case error δ(n) is an oracle procedure
R such that for all inversion oracles I with error δ(n), all sufficiently
large n, and all x of length n,

PrR,I [RI(x) �= L(x)] <
1
3
.
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The reduction is called non-adaptive if the reduction makes all its
queries in parallel, that is, each query is independent of answers to
previous queries.

If the function f were not one way, the inversion oracle could be
implemented by an efficient algorithm, and the reduction would give an
efficient algorithm for L. Thus, a worst-case to average-case reduction
can be viewed as a fairly general tool for establishing a connection
between the average-case complexity of inverting f and the worst-case
complexity of L.

In a similar fashion, we can define worst-case to average-case reduc-
tions for other primitives in average-case complexity, in particular, dis-
tributional decision problems and distributional search problems (of
which one-way functions are a special case). The only part of the def-
inition that differs for these primitives is the notion of an inversion
oracle, which we call “approximate oracle” in this context. For illustra-
tion we state the definition for deterministic oracles, and for decision
problems only.

Definition 7.3. Let L be a language and D an ensemble of distribu-
tions. An approximate oracle for (L,D) with error δ(n) is a function
A : {0,1}∗ → {0,1,⊥} such that for all n,

Prx∼Dn [A(x) �= L(x)] < δ(n).

The approximate oracle is errorless if for all x, A(x) ∈ {L(x),⊥}.
A worst-case to average-case reduction with error δ(n) from L to

(L′,D) is an efficient oracle procedure R such that for all approximate
oracles A with error δ(n), all sufficiently large n, and all x of length n,
PrR[RA(x) �= L(x)] < 1

3 .

Thus, if (BH,UBH) has an efficiently computable approximate ora-
cle, then (NP,PSamp) ⊆ HeurBPP; if the oracle is errorless, then
(NP,PSamp) ⊆ AvgZPP. Assuming NP �⊆ BPP, the existence of a
worst-case to average-case reduction from SAT to (BH,UBH) implies
that (NP,PSamp) �⊆ HeurBPP (or (NP,PSamp) �⊆ AvgZPP, if the
reduction only works with respect to errorless oracles).
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This definition of “worst-case to average-case reduction” models the
framework used to establish the amplification of hardness results from
Chapter 6. Also, in the extreme case δ = 0, the definition becomes the
standard notion of reducibility between worst-case problems.

Alternative definitions: The notion of “worst-case to average-
case reduction” attempts to capture a reasonable class of possible
approaches for basing average-case complexity and cryptography on
NP-hardness. We wish to stress, however, that the definition is by no
means canonical and that it is natural to consider certain variants. For
simplicity we focus on Definition 7.3.

One alternative to Definition 7.3 is to consider generic procedures
that, given oracle access to any worst-case hard language L, produce
an average-case hard language (L′,D). For such a procedure A to be
useful for NP languages, it should be the case that A itself is an NP
procedure with access to an oracle. This notion is interesting because
such procedures exist in higher complexity classes such as PSPACE
and EXP, where they are used to establish worst-case to average-case
connections. The amplification results of Chapter 6 are also of this type.
Viola [75] (see also [74]) shows that no such oracle procedure exists
in NP, and even in the polynomial hierarchy (unless (NP,PSamp) �⊆
HeurP/poly, in which case A exists trivially).

In summary, Viola’s result shows that any worst-case to average-
case reduction in NP must use specific properties of the worst-case
language it is reducing from. Indeed, the worst-case to average-case
reductions of Ajtai, Micciancio, and Regev heavily exploit properties
that are specific to lattices.

A serious limitation of Definition 7.3 is that it does not impose
any computational restriction on the average-case oracle.2 In reality, to
base average-case complexity on NP-hardness, the reduction need only
consider candidate average-case oracles that can be implemented in
BPP. This intriguing type of a reduction is called a “BPP-class black-
box reduction” by Gutfreund and Ta-Shma [37]: As in Definition 7.3,
the reduction only obtains oracle (black box) access to the average-case

2 In fact, all results presented in this section hold for Σ2 oracles, and in some cases for NP
oracles.
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solver, but is allowed to behave arbitrarily if the oracle cannot be imple-
mented in BPP. Gutfreund, Shaltiel, and Ta-Shma [36, 37] show an
interesting setting in which BPP-class black box reductions are prov-
ably more powerful than ordinary worst-case to average-case reductions
(under reasonable assumptions). However, it is not known whether such
reductions can be used to base average-case complexity for NP and
cryptography on NP-hardness.

It is of course possible to further relax the definition and allow the
reduction non-black box access to an implementation of the inversion
oracle. Little is known about the power of such a setting.

7.2 Permutations and range-computable functions

What is the hardest language L for which we can expect to have a
worst-case to average-case reduction from L to inverting some one-way
function? Let us look at some simple cases first.

First, let us consider the case of a reduction R from L to a one-way
permutation f : {0,1}n → {0,1}n. Then it is not difficult to see that L

must be in AM ∩ coAM (NP ∩ coNP if the reduction is deterministic).
The situation is completely analogous for L and L, so it is sufficient
to prove that L ∈ AM. A simple two-round protocol for deciding mem-
bership in L works as follows: In the first round, the verifier sends the
coins used by the reduction to the prover. In the second round, the
prover sends the verifier a transcript that describes the computation
on R when given access to an oracle that inverts f on all inputs. When
R makes oracle query q, the honest prover answers with the unique a

such that f(a) = q. The verifier can check that all the answers provided
by the prover are consistent with its queries, thus forcing the prover to
perfectly simulate a computation of R when given oracle access to an
inverter for f . At the end of the interaction, the verifier accepts iff the
transcript provided by the prover is an accepting transcript for R.

It follows that the average-case hardness of any one-way permuta-
tion can be based, at best, on the worst-case hardness of some problem
in AM ∩ coAM. Thus, there appears to be no hope of basing the hard-
ness of any cryptosystem that requires one-way permutations on the
assumption NP �⊆ BPP.
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7.2.1 k-to-one functions

A permutation is a function that is both onto and one-to-one; Akavia
et al. [9] consider what happens when the function f : {0,1}n+logk →
{0,1}n is k-to-one, namely every element in {0,1}n has exactly k pre-
images under f . The crucial difference between the cases k = 1 and
k > 1 is that when k = 1, the function f admits a unique inverting
oracle, while for k > 1 there are many such oracles. To illustrate the
significance of this, let us see what happens when the above protocol for
permutations is applied to a two-to-one function f . Since the number
of inverting oracles for f is now doubly exponential in n, it may be the
case that for every choice of randomness by the reduction, there exists
some inversion oracle that makes the reduction output the incorrect
answer. A cheating prover can then force the verifier to output the
incorrect answer by using this inversion oracle in its simulation.

The solution of Akavia et al. is to force the prover to commit to
a particular oracle that is independent of the randomness used by
the reduction. Let us first illustrate this with the case k = 2. Then
it is easy to modify the protocol for L so that the prover is always
forced to simulate interaction with the “smallest” inverting oracle for
f : This is the inverter that, on input q, always answers with the lexi-
cograpically smaller pre-image of q under f . To check correctness, for
every query q the verifier always asks to see both pre-images of q, and
always uses the smaller of the two values in its simulation of the reduc-
tion. It is straightforward that this argument works for any k up to
poly(n).

For values of k larger than poly(n), it is infeasible to ask the prover
to provide a complete list of pre-images for each query. Instead, the
prover is forced to provide a random pre-image, which is independent
of the randomness used by the reduction. Thus, the prover will simulate
the interaction of R with a random inverter. Let us outline how such
a random pre-image might be obtained. The random inverter that the
proof system intends to simulate is the following one: For each possible
query q, choose a random hash function h mapping n bits to slightly
fewer than log2(k/s) bits, where s = poly(n). With high probability, the
size of the set S = h−1(0) ∩ f−1(q) is about s. Out of all the elements
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of S, choose the lexicographically smallest one (and if S is empty, choose
an arbitrary inverse of q).

As a first attempt, consider this proof system for simulating the
inverter on a query q: The verifier chooses a random hash function h,
asks the prover for a complete list of members of S, and chooses the
lexicographically smallest one. Notice that no prover can include ficti-
tious members of S in its list because membership in S is an efficiently
verifiable property. Therefore, provers can only cheat in a “one-sided”
manner: A cheating prover can attempt to omit members of S, but
never claim fictitious members of S.

A cheating prover may, of course, fool the verifier by claiming that,
say, S is empty. The verifier knows that the size of S must be approxi-
mately s, so the verifier can protect against such an attack by rejecting
all sets S whose size deviates substantially from s. The problem is that
the cheating prover may fool the verifier even by omitting a single entry
of S, namely the lexicographically smallest one. Hence the verifier must
ensure that the prover has not omitted even a single element of S.

This appears impossible to achieve in general, as deviation bounds
on the size of S only guarantee that S will have roughly the expected
number of elements. Instead, Akavia et al. consider what happens when
we fix the randomness used by the reduction and execute this protocol
t = poly(n) times independently in parallel. Let Si denote the set S

resulting from the ith run of the protocol.
Now suppose that for every potential query q, it can be guaranteed

that in a 1 − ε fraction of the t protocol runs, the prover provides
the correct set Si. Then at least a 1 − ε fraction of the protocol runs
provide a correct answer to the first query asked by the reduction; out
of those, a 1 − ε fraction of runs provide a correct answer to the second
query, and so on. If the verifier asks � queries, then a (1 − ε)� fraction of
runs will have all their queries answered correctly. By choosing ε small
enough, it can be ensured that a random run simulates the reduction
correctly with high probability.

Therefore, the main task is to design a verifier test that ensures that
a 1 − ε fraction of the t protocol runs yield the correct set Si. The
crucial point is that in order to make the verifier fail with probability
ε, a cheating prover must now omit at least εt elements from the union
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of sets S1 ∪ ·· · ∪ St.3 For t � s/ε2, εt becomes a significant deviation
from st, the expected size of this union. Statistically, we know that
with high probability,∣∣|S1 ∪ ·· · ∪ St| − st

∣∣ < εt/2

so if the verifier checks that
t∑

i=1

|prover’s claim for Si| ≥ st − εt/2

the honest prover will pass this check with high probability. On the
other hand, this severely limits the power of a cheating prover: If any
prover omits more than εt elements from S1 ∪ ·· · ∪ St, then

t∑
i=1

|prover’s claim for Si| < |S1 ∪ ·· · ∪ St| − εt

< (st + εt/2) − εt

< st − εt/2,

and the verifier rejects. Notice that the soundness of this protocol relies
on the fact that the power of a cheating prover is one sided: A cheating
prover can only understate, but never overstate the size of the sets Si.

One additional condition that must be ensured is that the sets Si

are non-empty for most i, for otherwise not even the honest prover
can correctly simulate the inverter for f . This can be achieved by an
appropriate choice of parameters.

Size-computable, size-approximable, and size-certifiable
functions: A family of functions fn : {0,1}n → {0,1}∗ is size com-
putable if there is an efficient algorithm that on inputs n and y

runs in time polynomial in n and outputs the number |f−1
n (y)|. The

k-to-one functions considered above can be viewed as a special case of
size-computable functions. If the algorithm outputs an approximation
of |f−1

n (y)| within an arbitrary factor that is inverse polynomial
in n, the family is called size approximable. If the algorithm is
non-deterministic, the family is called size certifiable. The protocol
3 By convention we assume that the sets are pairwise disjoint.
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of Akavia et al. naturally extends to the case of size-computable,
size-approximable, and size-certifiable functions.

Theorem 7.4. (Akavia et al.) Suppose there exists a worst-
case to average-case reduction from language L to inverting a size-
approximable or size-certifiable family of functions {fn}. Then L ∈
AM ∩ coAM.

An example of a size-certifiable family is the family of functions

fn(p,q) =

{
p · q if p and q are 
n/2�-bit primes,

0 otherwise.

It is widely believed that this family of functions is weakly one way.
However, Theorem 7.4 shows that the problem of inverting this family
is unlikely to be NP-hard.

7.3 General one-way functions and average-case
hard languages

Theorem 7.4 can be interpreted as evidence that it may not be possible
to base the hardness of one-way functions on an NP-complete problem.
The requirement that the family {fn} be range certifiable may appear
to be a technical one, and it is often the case that the existence of
one-way functions satisfying some additional technical requirement is
equivalent to the existence of general one-way functions.

We will argue that this interpretation of Theorem 7.4 is mistaken.
Observe that the protocol of Akavia et al. in fact simulates a run of the
reduction interacting with a worst-case inversion oracle for fn, not an
average-case one; thus it shows that even the more difficult problem of
inverting y = fn(x) on every output y is unlikely to be NP-hard.

On the other hand, we do know of one-way functions that are NP-
hard to invert in the worst case. For instance, consider the function f

that maps a CNF ϕ and an assignment a for ϕ to (ϕ,ϕ(a)). A worst-
case inversion algorithm for f solves the search version of SAT. Natu-
rally, we do not interpret this as saying that “f is a one-way function
that is NP-hard to invert,” because it may well be the case that even
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though f is NP-hard to invert on all inputs, it is invertible on most
inputs. (This is in fact true for many natural choices of distribution on
inputs.)

Thus, if it is indeed the case that the hardness of inverting one-way
functions cannot be based on an NP-complete problem, the argument
must use the fact that the assumed reduction from the NP-complete
problem to the inversion oracle works correctly with respect to an
average-case inversion oracle, not only for a worst-case one.

At this point it is not known whether such reductions exist in gen-
eral. The techniques described in the previous section can be viewed as
partial progress toward a negative result that are obtained by putting
restrictions on the type of one-way function under consideration. In
this section we present a different approach that allows for general
one-way functions but places restrictions on the type of reduction used
to establish the worst-case to average-case equivalence. In contrast to
Theorem 7.4, some of the results presented below make essential use of
the fact that the one-way function must be hard to invert on average.

We begin by looking at the connection between worst-case and
average-case hardness for languages, rather than functions. In partic-
ular, we focus on the relation between the conjectures NP �⊆ BPP and
(NP,U) �⊆ HeurBPP.

7.3.1 The Feigenbaum-Fortnow approach

What can a worst-case to average-case reduction from a language L to
a distributional NP problem (L′,U) look like?

To begin with, we observe that if the reduction is deterministic,
then L must be in P: For any x ∈ {0,1}∗, the answer produced by the
reduction on input x must be independent of the choice of average-case
oracle for L′. One such average-case oracle is the oracle that agrees with
L′ on all the strings that are not queried by the reduction on input x,
and answers ⊥ on all the other queries. From the point of view of the
reduction, however, this oracle is indistinguishable from the oracle that
answers ⊥ on every query. Therefore, an efficient algorithm for L can
be obtained by simulating the reduction on input x with access to an
oracle that always answers ⊥.
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It follows that any non-trivial worst-case to average-case reduction
must make randomized queries to the average-case oracle. Feigenbaum
and Fortnow [27] consider the case in which the reduction is non-
adaptive and the distribution of every query made by the reduction
on input x of length n is uniform in {0,1}n′

for some n′ = poly(n).
Reductions of these type are called locally random reductions. The rea-
son such reductions are interesting is that they provide a natural way
of establishing a worst-case to average-case connection: If the reduction
asks q queries, then any average-case oracle that is 1/4qn′-close to L′

with respect to the uniform distribution is indistinguishable from L′

itself from the point of view of the reduction with probability 3
4 . Thus,

if there exists a locally random reduction from L to L′, and L is hard
in the worst-case, then L′ is hard to solve on more than a 1 − 1/4qn′-
fraction of inputs. Locally random reductions have been used to estab-
lish worst-case to average-case connections in settings other than NP.

Feigenbaum and Fortnow essentially rule out locally random reduc-
tions as a tool for establishing worst-case to average-case connection
for all of NP. More precisely, they show that if there exists a locally
random reduction from a language L to a language L′ in NP, then it
must be that L is in NP/poly ∩ coNP/poly. In particular, L is unlikely
to be NP-hard: If L is NP-hard, then NP is contained in coNP/poly,
and the polynomial hierarchy collapses to the third level.

To prove this, Feigenbaum and Fortnow give a way to simulate the
reduction (on input x) by an AM proof system that uses polynomial
length non-uniform advice. The outcome of the simulation then deter-
mines whether x is a “yes” or a “no” instance of L. Thus, the protocol
can be used to determine membership in both L and L. An AM proof
system with advice can be turned into a non-deterministic circuit, giv-
ing the conclusion L ∈ NP/poly ∩ coNP/poly.

The Feigenbaum-Fortnow protocol: Let R be a locally random
reduction from L to L′ ∈ NP. Suppose that on an input of length n,
R makes k queries, each of which is uniformly distributed in {0,1}n′

.
Without loss of generality, assume that R is correct with very high
probability (say 1 − 1/k3) over its random coins.
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We show an interactive protocol for membership in L. The protocol
for L is identical except that it inverts the answers given by R.

The non-uniform advice used by the protocol will be the value p =
Pry∼{0,1}n′ [y ∈ L′].

The protocol: On input x ∈ {0,1}n,

(1) Verifier: Run R(x) independently m = 64k2 logk times to
generate m sets of queries (y1

1, . . . ,y
1
k), . . . ,(y

m
1 , . . . ,ym

k ). Send
all queries to the prover.

(2) Prover: For each yj
i , respond by saying whether yj

i ∈ L′.
Accompany each claim that yj

i ∈ L′ by an NP-certificate for
yj

i .
(3) Verifier: Accept if all of the following conditions hold:

(a) R(x) accepts in all m iterations using the answers
provided by the prover,

(b) All certificates sent by the prover are valid, and

(c) For every 1 ≤ j ≤ k, at least pm − m/2k of the
queries y1

j , . . . ,y
m
j are answered “yes.”

If x ∈ L and the prover follows the protocol, then R(x) accepts in
all m iterations with high probability, and the verifier accepts pro-
vided condition 3(c) is satisfied. Note that for each fixed j, the strings
y1

j , . . . ,y
m
j are independent and uniformly distributed in {0,1}n′

, and
each one has probability p of being a yes instance. By Chernoff bounds,
with probability at least 1/4k, at least pm − 4

√
m logk > pm − m/2k

of them are yes instances. By a union bound with probability 3
4 , this is

satisfied for all j and condition 3(c) holds.
If x �∈ L, to make the verifier accept, the prover must send an erro-

neous answer in every one of the m runs of R(x), so in particular there
must be at least m errors among the prover’s answers. All the erroneous
answers of the prover must be yes instances on which it answers no (if
the prover tries to cheat the other way, it would not be able to provide
certificates). In particular, there must be some j such that among the
queries y1

j , . . . ,y
m
j at least m/k are answered no even though they were

yes instances. By a Chernoff bound as above, it is unlikely that there
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are more than pm + 4
√

m logk yes instances among y1
j , . . . ,y

m
j , so the

prover is giving at most pm + 4
√

m logk − m/k < pm − m/2k “yes”
answers for y1

j , . . . ,y
m
j . Then the verifier rejects with high probability

in step 3(c).

7.3.2 Arbitrary non-adaptive reductions

For the result of Feigenbaum and Fortnow, it is not necessary that
the distribution of each query made by the reduction be uniform over
{0,1}n′

, but it is essential that the marginal distribution of queries
made by the reduction be independent of the reduction’s input. This
restriction is quite strong, and in this sense, the result is extremely
sensitive: If one modifies the distribution of queries even by an expo-
nentially small amount that depends on the input, all statistical prop-
erties of the reduction are preserved, but one can no longer draw the
conclusion that L ∈ NP/poly ∩ coNP/poly.

Bogdanov and Trevisan [15] show that the conclusion of Feigen-
baum and Fortnow holds in a more general setting. They show that
the existence of any non-adaptive worst-case to average-case reduction
from L to an arbitary problem (L′,D) in (NP,PSamp) implies that L

is in NP/poly ∩ coNP/poly, with no restriction on the distribution of
queries made by the reduction. In particular, the queries made by the
reduction are allowed to depend arbitrarily on the input x. This formu-
lation extends the result of Feigenbaum and Fortnow in two directions:
First, et allows for a more general class of worst-case to average-case
reductions; second, et allows average-case complexity to be measured
with respect to an arbitrary samplable distribution, not only the uni-
form distribution.

Theorem 7.5.(Bogdanov and Trevisan) Suppose that there exists
a non-adaptive worst-case to average-case reduction from a language
L to a decision problem (L′,D) in (NP,PSamp). Then L ∈ NP/poly ∩
coNP/poly.

The proof of Bogdanov and Trevisan uses essentially the fact that
the reduction is correct when given access to an arbitrary average-
case oracle for (L′,D). The idea of the proof is again to simulate the
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reduction querying an average-case oracle for (L′,D) with an AM proto-
col using advice. Observe that the Feigenbaum-Fortnow protocol works
for arbitrary non-adaptive reductions whenever it is given as auxiliary
input the probability px that a random query made by the reduction
on input x is a “yes” instance of L′ according to distribution D. For a
general reduction, however, the value px cannot be provided as advice
for the protocol because it may depend on the particular input x.

The idea of Bogdanov and Trevisan is to use a different protocol
to compute the value px, then use the Feigenbaum-Fortnow protocol
for membership in L using the value px as auxiliary input. Initially,
a weaker version of the theorem is proved where D is the uniform
distribution. To begin with, let us allow the distribution of queries
made by the reduction to depend on x, but restrict it to be “α-smooth”:
We assume that every query y is generated with probability at most
α · 2−|y|, where α is a constant. Suppose that, given a random query
y, we could force the prover to reveal whether or not y ∈ L′. Then by
sampling enough such queries y, we can estimate px as the fraction of
“yes” queries made by the reduction. But how do we force the prover
to reveal if y ∈ L′? The idea is to hide the query y among a sequence of
queries z1, . . . ,zk for which we do know whether zi ∈ L′, in such a way
that the prover cannot tell where in the sequence we hid our query y.
In such a case, the prover is forced to give a correct answer for y, for
if he were to cheat he would not know where in the sequence to cheat,
thus would likely be caught.

The problem is that we do not know a specific set of queries zi with
the desired property. However, the strings zi were chosen by sampling
independently from D, then with high probability pk ± O(

√
k) of these

queries will end up in L′, where p is the probability that a string sam-
pled from D is in L′. Since p depends only on the length of x but not on
x itself, it can be given to the verifier non-uniformly. This suggests the
following verifier strategy: Set k = ω(α2), generate k uniformly random
queries z1, . . . ,zk of length n, hide y among z1, . . . ,zk by inserting it at
a random position in the sequence, send all the queries to the prover
and ask for membership in L′ together with witnesses that at least
pk − O(

√
k) queries belong to L′. Then with high probability, either

the verifier rejects or the answer about membership of y in L′ is likely
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correct. Intuitively, a cheating prover can give at most O(
√

k) wrong
answers. The prover wants to use this power wisely and assign one of
these wrong answers to the query y. However, smoothness ensures that
no matter how the prover chooses the set of O(

√
k) queries to cheat

on, it is very unlikely that the query y falls into that set.
For a reduction that is not smooth, it is in general impossible to hide

a query y among random queries from D using the above approach.
However, suppose that the verifier had the ability to identify queries y

that occur with probability ≥ α · 2−|y|; let us call such queries “heavy”
and the other ones “light.” The fraction of heavy queries in D is at most
1/α. Suppose also that the prover answers all light queries correctly.
The prover can then certify membership in L as follows: If the query
made by the reduction is heavy, pretend that the average-case oracle
answered ⊥, otherwise use the answer provided by the prover. This
process simulates exactly a run of the reduction when given access to
an average-case oracle that agrees with L′ on all the light queries, and
answers ⊥ on all the heavy queries. In particular, the oracle agrees with
L′ on a 1 − 1/α fraction of strings, so the reduction is guaranteed to
return the correct answer.

In general, the verifier cannot identify which queries made by the
reduction are heavy and which are light. The last element of the con-
struction by Bogdanov and Trevisan is an AM protocol with advice
that accomplishes this task.

The case of a general samplable distribution D can be reduced to the
case when D is the uniform distribution using Theorem 5.2, observing
that the reduction in the proof is indeed non-adaptive.

7.3.3 Search problems and one-way functions

Theorem 7.5 shows that non-adaptive worst-case to average-case reduc-
tions from an NP-hard problem to decision problems in (NP,PSamp)
are unlikely to exist. How about reductions to search problems? Using
the fact that search-to-decision reduction described in Section 4.2
is non-adaptive, we can conclude that non-adaptive reductions from
NP-hard problems to distributional search problems in NP are also
unlikely to exist.
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A case of special interest is when the distributional search problem is
inverting a one-way function: If there exists a non-adaptive worst-case
to average-case reduction from a language L to a family of functions
{fn}, then L ∈ NP/poly ∩ coNP/poly. Using a more refined argument
for the case of one-way functions, Akavia et al. obtain a simulation of
the reduction by an AM protocol without advice:

Theorem 7.6. (Akavia et al.) Suppose that there exists a non-
adaptive worst-case to average-case reduction from language L to
inverting a family of functions {fn}. Then L ∈ AM ∩ coAM.

7.4 Public key encryption

Do there exist public key encryption schemes whose security can be
based on the assumption NP �⊆ BPP? Since public key encryption
schemes are harder to design than one-way functions, we expect that
this question should be only harder to answer in the affirmative than
the question whether one-way functions follow from the assumption
NP �⊆ BPP. Conversely, the lack of cryptographic primitives based on
NP hardness assumptions should be easier to explain in the public key
setting than in the symmetric key setting.

As in the case of one-way functions, we interpret the question
whether public key encryption can be based on the assumption that
NP �⊆ BPP as asking for the existence of an efficiently computable
reduction that converts any adversary that breaks the encryption
scheme into an algorithm for SAT. By an encryption scheme, we mean
a collection consisting of a key generation algorithm G, an encryption
algorithm E, and a decryption algorithm D (all randomized) such that

(1) algorithm G takes as input a hardness parameter n, runs in
time polynomial in n, and produces a pair of keys: the public
key pk and the secret key sk;

(2) algorithm E takes as inputs a hardness parameter n, a public
key pk, and a bit b to be encrypted, runs in time polynomial
in n, and satisfies the property that for most public keys
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pk (obtained by running G(n)), the distributions E(n,pk,0)
and E(n,pk,1) are computationally indistinguishable (with
respect to the parameter n, by an algorithm that takes as
auxiliary input n and pk);

(3) algorithm D takes as inputs a hardness parameter n, a secret
key sk, and a ciphertext c, runs in time polynomial in n, and
satisfies the property that for all b, and most pairs (pk,sk)
obtained from G(n), D(n,sk,E(n,pk,b)) = b with probabil-
ity negligible in n.

The existence of one-bit encryption is sufficient to construct public key
encryption schemes for messages of arbitrary length that satisfy very
strong notions of security.

As in the case of one-way functions, it is not known in general
whether there exists a reduction from SAT to an adversary for some
one-bit encryption scheme. However, such reductions can be ruled out
under certain restrictions either on the cryptosystem in question or on
the way the reduction works.

Goldreich and Goldwasser [33], building upon previous work by
Brassard [17] restrict attention to encryption schemes where for all
n and pk, the sets E(n,pk,0) ane E(n,pk,1) are disjoint, and moreover
the set

S = {(1n,pk,c) : c �∈ E(n,pk,0) ∪ E(n,pk,1)}
is in NP (namely, the property that c is a possible ciphertext is
efficiently refutable). Goldreich and Goldwasser observe that some,
but not all, known one-bit encryption schemes satisfy these proper-
ties. They observe that if there is a reduction from a language L

to an adversary for an encryption scheme of this type, then L ∈
AM ∩ coAM. The reason is that the reduction can be simulated by
a two-round proof system in which the prover plays the role of a
distinguishing oracle for the sets E(n,pk,0) and E(n,pk,1). In the
first round, the verifier chooses the randomness to be used by the
reduction and sends it to the prover. In the second round, the prover
sends a transcript of the reduction interacting with an adversary for
the encryption scheme. When the reduction queries the adversary on
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input (n,pk,c), there are three possibilities: Either c ∈ (n,pk,0), or
c ∈ (n,pk,1), or (n,pk,c) ∈ S. By assumption, all three of these cases
are efficiently certifiable. Therefore, a transcript of the reduction aug-
mented by certificates for the answers made by every query asked by
the reduction constitutes a valid and efficiently checkable simulation
of the reduction interacting with a distinguishing oracle for one-bit
encryption.

The requirement that the sets of possible encryptions of 0 and 1
are disjoint can be somewhat relaxed, and the requirement that the set
S is in NP can be substituted by a requirement that the reduction is
“smart” – it never queries invalid ciphertexts. Thus, the observation
of Goldreich and Goldwasser can be viewed as saying that the NP
hardness of one-bit encryption cannot be established via “non-smart”
reductions.

Should these arguments be viewed as an indication that public key
cryptography cannot be based on NP-hard problems? Observe that the
proof systems of Brassard, Goldreich, and Goldwasser do not use the
fact that the reduction outputs the correct answer even if it interacts
with an average-case distinguisher between the encryptions of 0 and
1. Thus, these are essentially results about the worst-case complex-
ity of breaking encryption, showing that under certain restrictions on
the encryption scheme or on the reduction, the hardness of breaking
the encryption in the worst case is a problem in NP ∩ coNP. How-
ever, these restrictions on the encryption scheme or on the reduction
cannot be so easily removed. As was shown by Lempel [51], there do
exist “encryption schemes” that are NP-hard to break in the worst
case, but are tractable to break on average: Namely, the problem “On
input (n,pk,E(n,pk,b)), find b” is NP-hard in the worst case, but is
tractable on average. (Lempel’s result generalizes the observation that
there exist one-way functions that are NP hard to invert in the worst
case but easy to invert on average to the setting of public key cryptog-
raphy.) Currently, there is no known argument that explains why public
key cryptography appears to require worst-case assumptions stronger
than NP �⊆ BPP beyond what is known for one-way functions, that is,
symmetric key cryptography.
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7.5 Perspective: Is distributional NP as hard as NP?

So far we have focused on negative results regarding connections
between the worst-case and average-case complexity of NP. Since these
results do not rule out the possiblity that distributional NP is as hard
as NP, the question remains whether such a connection is possible, and
if it is, how should one go about establishing it.

The problem of basing cryptography on NP-hardness has played a
central role since the beginnings of cryptography, and much research
effort has been put into answering this question in the affirmative. A
breakthrough was made in work by Ajtai [5], who showed that the
existence of intractable problems in distributional NP follows from
the assumption that there is no efficient algorithm that approximates
the length of the shortest vector on a lattice in the worst case (within
a factor of nO(1), where n is the dimension of the lattice). This is the
first example of a problem in distributional NP whose hardness fol-
lows from a reasonable worst-case intractability assumption. In later
works, Ajtai, Dwork, Micciancio, and Regev substantially extended
Ajtai’s original result, showing that (i) The existence of useful crypto-
graphic objects, including one-way functions and public key encryption
schemes, also follows from reasonable worst-case intractability assump-
tions and (ii) the worst-case intractability assumption used by Ajtai can
be substantially weakened, giving the hope that further improvements
could replace Ajtai’s assumption with the strongest possible worst-case
intractability assumption, namely NP �⊆ BPP.

All known worst-case to average-case connections for NP are estab-
lished by reductions, and all known reductions start from a problem
that is known to reside inside NP ∩ coNP. One view of this situation is
that membership in NP ∩ coNP does not reveal anything fundamental
about the relation between worst-case and average-case complexity for
NP, but is merely an artifact of the current reductions; improved reduc-
tions could go beyond this barrier, and eventually yield an equivalence
between worst-case and average-case hardness for NP.

On the other hand, the results presented in this section, if liber-
ally interpreted, seem to indicate the opposite: The mere existence
of a worst-case to average-case reduction for NP often implies that



90 Worst-Case Versus Average-Case and Cryptography

the problem one is reducing from is in NP ∩ coNP (or AM ∩ coAM,
or NP/poly ∩ coNP/poly.) Moreover, the reason for this connection
appears to be fairly universal: A worst-case to average-case reduction
can be viewed as a proof system in which the verifier runs the reduc-
tion, and the prover simulates the average-case oracle. The difficulty
is in forcing even a cheating prover to simulate the average-case oracle
correctly; currently, it is known how to do this only under restrictive
assumptions on the reduction (Theorems 7.5 and 7.6). However, further
improvements may lead to the conclusion that this connection between
worst-case to average-case reduction and constant-round proof systems
is a universal one, and thus there is no hope of basing average-case com-
plexity for NP on NP-hardness assumptions by means of a reduction.



8
Other Topics

The theory of average-case complexity for NP lacks the wealth of nat-
ural complete problems encountered in worst-case complexity. Yet,
there are many natural distributional problems that are believed to
be intractable on average.

One such problem is random kSAT, whose instances are generated by
choosing clauses independently at random. In Section 8.1 we survey some
of the known results about random kSAT, especially for k = 3. While ran-
dom 3SAT is not known to be average-case complete, some versions of
it are not known to have efficient errorless heuristics. An unusual result
of Feige shows that the intractability of random 3SAT would have some
interesting consequences in approximation complexity.

Another class of problems that are believed to be intractable on
average is derived from lattice-based cryptography. The importance
of these problems stems from the fact that they are the only known
examples of problems in distributional NP that are hard according
to a worst-case notion of hardness: If these problems were easy on
average, then the corresponding problems on lattices, long believed to
be hard, could be solved in the worst case. We survey some key results
in Section 8.2.
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8.1 The complexity of random kSAT

A widely investigated question in both statistics and the theory of com-
puting is the tractability of random kCNF instances with respect to
natural distributions. The most widely studied distribution on kCNF
instances is the following: Given parameters n > 0 and mk(n) > 0,
choose at random mk(n) out of the 2k

(
n
k

)
possible clauses of a kCNF on

n boolean variables. An essentially equivalent model is to choose each of
the possible 2k

(
n
k

)
clauses independently with probability mk(n)/2k

(
n
k

)
.

By a counting argument, it follows that when mk(n)/n ≥ 2k ln2, a
random kCNF is almost always unsatisfiable as n grows large. Bet-
ter analysis improves this upper bound by a small additive constant.
Achlioptas and Peres [2], following Achlioptas and Moore [1], prove
that when mk(n) < 2k ln2 − k ln2/2 − c (for a constant c), then a ran-
dom kCNF is almost always satisfiable. Their result is non-constructive,
that is, they do not provide an efficient algorithm that finds satisfying
assignments for a large fraction of such formulas.

For specific values of k, better lower and upper bounds are known.
All known such lower bounds, except for the Achlioptas-Peres and
Achlioptas-Moore results, are algorithmic. In particular, it is known
that 3.51 < m3(n)/n < 4.51.

Friedgut [28] showed that for every k ≥ 2, satisfiability of random
kCNF exhibits a (possibly) non-uniform threshold. More precisely, for
every ε > 0 and sufficiently large n there exists a value ck(n) such that
a random kCNF is satisfiable with probability 1 − ε when mk(n)/n ≤
(1 − ε)ck(n), and with probability at most ε when mk(n)/n ≥ (1 +
ε)ck(n). It is conjectured that the sequence ck(n) converges to a value
ck, known as the kSAT threshold, as n → ∞. Experiments indicate for
instance that c3(n) → c3 ≈ 4.26.

Assuming the existence of a threshold for kSAT, the existence
of heuristic algorithms for random kSAT with respect to this fam-
ily of distributions becomes trivial everywhere except possibly at the
threshold.1 However, the situation is different with respect to errorless

1 In the literature on random kSAT, usually the error parameter of the average-case algo-
rithm is implicitly fixed to o(1) or n−c for some fixed c. Not much is known for the case
of algorithms with negligible error or heuristic schemes.
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algorithms. Below the threshold, where most of the formulas are sat-
isfiable, an errorless algorithm must certify most satisfiable formulas
efficiently. In fact, since the lower bounds for mk(n) are algorithmic,
we know that for every k there is an errorless algorithm for kSAT
when mk(n)/n < ak2k/k, where the sequence ak converges to some
positive value. It is conjectured that algorithms for finding satisfying
assignments on most kCNF instances exist all the way up to the kSAT
threshold.

8.1.1 Refuting random CNF instances

Above the kSAT threshold, where most of the formulas are unsatisfi-
able, an errorless algorithm is required to refute most kCNF instances
efficiently. A useful way of thinking of such a refutation algorithm is
the following: The algorithm is given a kCNF instance ϕ and wants
to distinguish between the case when ϕ is satisfiable and when ϕ is
“typical” for the distribution on inputs. The algorithm can subject ϕ

to any efficiently computable test that a random ϕ passes with high
probability. If the instance ϕ does not pass these tests, the algorithm
can output ⊥. The challenge is to design a set of tests such that every
ϕ that passes all the tests must be unsatisfiable, in which case the
algorithm rejects ϕ.

When mk(n) > Ωk(nk−1), the following naive refutation algorithm
works: Take a variable, say x1, and consider all the clauses that contain
it. Fixing x1 to true yields a (k − 1)CNF consisting of those Ωk(nk−2)
clauses that contain the literal x1, and this formula can be refuted
recursively (the base case being a 2CNF, for which an efficient refuta-
tion algorithm exists). Repeat by fixing x1 to false. (For an improved
version of this approach, see [11].)

A more sophisticated approach for refuting random kCNF that han-
dles smaller values of mk(n) was introduced by Goerdt and Krivele-
vich [29]. Their idea is to reduce kCNF instances to graphs (using
a variant of Karp’s reduction from 3SAT to maximum independent
set) so that satisfiable formulas map to graphs with large independent
sets, while the image of a random kCNF instance is unlikely to have
a large independent set. Moreover, they show that for most graphs
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derived from random kCNF, it is possible to efficiently certify that
the graph does not have a large independent set via eigenvalue com-
putations. Subsequent improvements of this argument yield refutation
algorithms for random kCNF with mk(n) = ω(n
k/2�) [19]. For the case
k = 3 there are better refutation algorithms, and the best known works
for m3(n) = ω(n3/2) [25]. This algorithm departs from previous work in
that it does not reduce 3SAT to maximum independent set but uses a
different reduction by Feige [23], which we describe in the next section.

Do refutation algorithms for random kCNF exist when mk(n) is
above the satisfiability threshold ckn, but below nk/2? For the case
of 3CNF, there is evidence suggesting that refuting random formu-
las may be hard for m3(n) < n3/2−ε for every ε > 0. Ben-Sasson and
Wigderson [13] (following [18]) show that for this range of parame-
ters, most formulas require refutations by resolution of size 2Ω(nε/(1−ε)).
(The naive refutation algorithm above can be viewed as implement-
ing a simple proof by resolution.) Recently, Feige and Ofek [26] showed
that a different approach based on semi-definite programming that sub-
sumes the algorithm of [25] also fails to certify unsatisfiability when
m3(n) < n3/2/polylog(n).

A very recent breakthrough of Feige, Kim, and Ofek [24] gives a non-
deterministic refutation algorithm for m3(n) = ω(n7/5), thus showing
that random 3SAT with respect to this distribution is in Avgo(1)coNP.2

8.1.2 Connection to hardness of approximation

Feige [23] conjectures that for every constant c, unsatisfiability of ran-
dom 3CNF is hard to certify (within negligible error) whenever m3(n) <

cn. In particular, Feige’s conjecture implies that (NP,PSamp) �⊆
AvgnegP, but there is no evidence as to whether random 3SAT with
parameter m3(n) < cn is complete for the class (NP,PSamp).

Instead of pursuing connections with average-case complexity, Feige
views his conjecture as a strengthening of the famous result by
H̊astad [38] about the inapproximability of 3SAT in the worst case.
Indeed, H̊astad shows that assuming P �= NP, it is hard to distin-
guish between satisfiable 3CNF instances and 3CNF instances where

2 This class is defined in a way analogous to AvgδP; see Section 2.2.
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no more than a 7
8 + ε fraction of the clauses can be satisfied. The class

of instances on which no more than 7
8 + ε fraction of the clauses can be

satisfied in particular includes most random 3CNF instances with cn

clauses for sufficiently large c. Feige’s conjecture says that even if we
restrict ourselves to these random instances, the distinguishing prob-
lem remains intractable. As several inapproximability results assum-
ing P �= NP follow by reduction from the hardness of approximating
3SAT, it can be hoped that Feige’s stronger conjecture may yield new
or stronger conclusions.

The main technical result of Feige is the following theorem. For
notation purposes, given a 3CNF ϕ and an assignment a, let µi(ϕ,a)
denote the fraction of clauses in ϕ, where a satisfies exactly i literals,
for 0 ≤ i ≤ 3.

Theorem 8.1. (Feige) For every ε > 0 there exists an algorithm A

that for all sufficiently large c, has the following properties:

(1) A accepts all but a negligible fraction of random 3CNF on n

variables and cn clauses.
(2) For sufficiently large n, if ϕ is a satisfiable 3CNF with n

variables and cn clauses and A accepts ϕ, then for every
satisfying assignment a of ϕ, it holds that µ1(ϕ,a) = 3/4 ± ε,
µ2(ϕ,a) < ε, and µ3(ϕ,a) = 1/4 ± ε.

Observe that, in contrast, for most random 3CNF ϕ and every
assignment a, we have that µ1(ϕ,a) = µ2(ϕ,a) = 3

8 ± ε and µ0(ϕ,a) =
µ3(ϕ,a) = 1

8 ± ε.
Assuming the conjecture, the theorem, for instance, implies the fol-

lowing: For a 3CNF ϕ with n variables and cn clauses, it is hard to
distinguish between the following cases:

(1) There exists an assignment for ϕ that satisfies all literals in
a 1

4 − ε fraction of clauses
(2) No assignment for ϕ satisfies all literals in more than a 1

8 + ε

fraction of clauses.
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This hardness of approximation result is not known to follow from
P �= NP. Feige shows that hardness of approximation results for bal-
anced bipartite clique, min bisection, dense subgraph, and the 2-catalog
problem follow from it3 via combinatorial reductions.

8.2 The complexity of lattice problems

Discrete lattices in R
n provide examples of problems in NP that are

believed to be intractable in the worst case and which worst-case to
average-case reduce to certain distributional problems in (NP,PSamp).
Some of these reductions yield stronger objects such as one-way func-
tions, collision-resistant hash functions, and public key cryptosystems.

The lattice problems in question are all promise problems [21, 32].
Instead of attempting to list all their variants and the connections
between them, for illustration we focus on the shortest vector problem.
(Other lattice problems exhibit similar behavior. For a more general
treatment, see [58] and [59].) A lattice L in R

n is represented by specify-
ing a basis of n vectors for it (all vectors have poly(n) size descriptions).

The shortest vector problem SVPγγγ(n): The instances are pairs
(L,d), where L is a lattice in R

n and d is a number. In yes instances,
there exists a vector v in L of length at most d.4 In no instances, every
vector in L has length at least γ(n)d.

This problem is in NP (for γ(n) ≥ 1.) The following seemingly easier
variant also turns out to be useful.

The unique shortest vector problem uSVPγγγ(n): This is the same
as SVPγ(n), except that in yes instances we require that every vector
in L whose length is at most γ(n)d be parallel to the shortest vector v.

We stress that we are interested in the worst-case hardness of
these problems as the dimension of the lattice n grows. The best-
known polynomial-time approximation algorithm for the shortest vec-
tor problem, due to Ajtai, Kumar, and Sivakumar [8], solves SVPγ(n)
for γ(n) = 2Θ(n log logn/ logn) (previous algorithms of Lenstra, Lenstra,

3 To be precise, Feige proves and needs a slightly more general result.
4 To be specific we measure length in the �2 norm. The problem is no easier for other �p

norms, see [66].
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and Lovász [52] and Schnorr [67] achieve somewhat worse approxima-
tion factors). For polynomial approximation factors γ(n) = poly(n), the
best-known algorithms run in time 2Θ(n) [8, 50].

In a seminal article, Ajtai [5] showed that assuming SVPO(nc) is
intractable for some fixed c > 0 there exist one-way functions. He con-
structs a family of functions {fn} for which there exists a worst-case to
average-case reduction from SVPO(nc) to inverting {fn}. Later, Ajtai
and Dwork [7] showed that public key encryption exists assuming
uSVPO(nc) is intractable for some fixed c > 0. The parameter c has
been improved since the original constructions, and it is known that

(1) One-way functions and collision-resistant hash functions
exist assuming SVPÕ(n) is intractable [59].

(2) Public key encryption exists assuming uSVPÕ(n1.5) is
intractable [63].

(3) Public key encryption exists assuming SVPÕ(n1.5) is
intractable by quantum algorithms [64].

A short, self-contained outline of a basic worst-case to average-case
reduction from uSVP can be found in a tutorial of Regev [65].

These results greatly motivate the study of hardness of lattice prob-
lems: For instance, if it were true that SVPn1.5+ε is NP-hard for some
ε > 0, it would follow that one-way functions exist (and in particular
(NP,PSamp) �⊆ HeurBPP) assuming only NP �⊆ BPP.

However, the best hardness results known for the shortest vec-
tor problem fall short of what is necessary for the current worst-
case to average-case reductions. Micciancio [56] (following Ajtai [6])
showed that SVPγ(n) where γ(n) =

√
2 − ε is NP-hard under ran-

domized polynomial-time reductions for every ε > 0. More recently,
Khot [48] improved the hardness to γ(n) = 2(logn)1/2−ε

for every ε > 0,
but his reduction runs in randomized quasipolynomial time.

On the other hand, Goldreich and Goldwasser [30] showed that
SVPγ(n) ∈ coAM for γ(n) = Ω(

√
n/ logn) and Aharonov and Regev [4]

showed that SVPγ(n) ∈ coNP for γ(n) = Ω(
√

n). This can be taken as
evidence that SVPγ(n) is not NP-hard when γ(n) exceeds

√
n, but one

must be careful because SVPγ(n) is a promise problem, not a language.
While it is true that assuming NP �= coNP, languages in NP ∩ coNP
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cannot be NP-hard, this conclusion fails in general for promise prob-
lems: Even, Selman, and Yacobi [21] give an example of a promise
problem that is NP-hard yet resides in NP ∩ coNP.

It is interesting to observe that the one-way functions constructed
by Ajtai [5] and Micciancio and Regev [59] are size-approximable (in
fact, almost regular), so by Theorem 7.4 in the best case the hardness
of these functions can be based on problems in AM ∩ coAM.



A
Samplable Ensembles Versus Samplable

Distributions

In the work of Ben-David et al. [12] that explains and extends Levin’s
original definitions [53], a distribution over {0,1}∗ is considered sam-
plable if it is generated by a randomized algorithm S that runs in time
polynomial in the length of its output.

Working with ensembles of samplable distributions instead of a sin-
gle samplable distribution does not incur any loss of generality: In fact,
for every samplable distribution D there exists a samplable ensemble
{Dn} such that A is a heuristic scheme with respect to D if and only
if some algorithm A′ (a slight modification of A) is a heuristic scheme
with respect to {Dn}. (The equivalence preserves the errorless property
of heuristic schemes.)

To sketch the proof, let Xn be the set of all x ∈ {0,1}∗ such that
the sampler S for D outputs x in n or fewer steps. Let Dn be the
distribution D conditioned on the event x ∈ Xn, so that for every x ∈
Xn, Dn(x) = D(x)/D(Xn). Let n0 be the smallest n for which D(Xn) ≥
1
2 . The ensemble {Dn} is samplable,1 the support of Dn is contained
in {0,1}≤n, and D(Xn) = 1 − on(1).

1 When n ≥ n0, run S for n steps repeatedly until a sample is produced; for smaller n,
the distribution Dn can be hard coded in the sampler. This sampler runs in expected

99



100 Samplable Ensembles Versus Samplable Distributions

Given an algorithm A that is good on average for D, we define

A′(x;n,δ) =

{
A(x;δ/2), if n ≥ n0,

L(x), otherwise.

For n < n0, the distribution Dn contains strings of length at most n0,
and the answers for these inputs are hardcoded into A′. For n ≥ n0,
we have

Prx∼Dn [A′(x;n,δ) �= L(x)] ≤ Prx∼D[A′(x;n,δ) �= L(x)]/D(Xn)

≤ Prx∼D[A(x;δ/2) = ⊥]/1
2 ≤ δ.

Conversely, given an algorithm A′ that is good on average for {Dn},
we define

A(x;δ) = A′(x;p(|x|), δ/2|x|2),
where p(n) is an upper bound on the time it takes S to output a string
of length n. We have

Prx∼D[A(x;δ) �= L(x)]

= Prx∼D[A′(x;p(|x|), δ/2|x|2) �= L(x)]

=
∞∑

n=0

Prx∼D[A′(x;p(n), δ/2n2) �= L(x) and |x| = n]

≤
∞∑

n=0

Prx∼D[A′(x;p(n), δ/2n2) �= L(x) and S → x in p(n) steps]

≤
∞∑

n=0

Prx∼Dp(n) [A
′(x;p(n), δ/2n2) �= L(x)]

≤
∞∑

n=0

δ/2n2 < δ.

polynomial time, so Dn does not in fact satisfy the definition on perfect samplability;
however, it is within statistical distance 2−poly(n) of a samplable distribution, and we
will ignore the distinction.
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