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In this paper, we present a new hardness amplification for low-degree polynomials over prime fields, namely,
we prove that if some function is mildly hard to approximate by any low-degree polynomials then the sum
of independent copies of the function is very hard to approximate by them. This result generalizes the XOR
lemma for low-degree polynomials over the binary field given by Viola and Wigderson [VW08]. The main
technical contribution is the analysis of the Gowers norm over prime fields. For the analysis, we discuss
a generalized low-degree test, which we call the Gowers test, for polynomials over prime fields, which is
a natural generalization of that over the binary field given by Alon, Kaufman, Krivelevich, Litsyn and
Ron [AKK+03]. This Gowers test provides a new technique to analyze the Gowers norm over prime fields.
Actually, the rejection probability of the Gowers test can be analyzed in the framework of Kaufman and
Sudan [KS08]. However, our analysis is self-contained and quantitatively better. By using our argument, we
also prove the hardness of modulo functions for low-degree polynomials over prime fields.
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1. INTRODUCTION
Hardness amplification [Yao82] is a method for turning a function that is somewhat
hard to compute into one that is very hard to compute against a given class of ad-
versaries. The existence of many objects in average-case complexity and cryptography,
such as hard on average NP problems and one-way functions, rely on unproven as-
sumptions. In many cases, hardness amplification allows us to prove that if weakly
hard versions of such objects exist, then strongly hard ones exist as well.

In settings where complexity lower bounds are known, applications of hardness am-
plification are not so common. Nevertheless, the method can sometimes be used to
turn unconditional weak lower bounds into strong ones. Viola and Wigderson [VW08]
showed an XOR lemma that amplifies the hardness of functions f : Fn2 → F2 against
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0:2 A. Bogdanov et al.

low-degree polynomials over finite fields. There are many examples of weakly hard
functions for this class of adversaries. The result of Viola and Wigderson allows us to
turn these into functions of related complexity that are very hard to approximate (in
terms of approximation accuracy) by polynomials of the same degree. Specifically, they
take a function f that disagrees with every degree-d polynomial on a noticeable frac-
tion of inputs and use it to construct a function f ′ such that no low-degree polynomial
can noticeably outperform a constant function in predicting the value of f ′ at a random
point.

Low-degree polynomials are fundamental objects in theoretical computer science,
with applications in error-correcting codes, circuit complexity, probabilistically check-
able proofs, and so on [Raz87; Smo87; BFL91; GLR+91; FGL+96]. In some cases re-
sults about polynomials over F2 can be easily extended to other finite fields, but in
other cases different ideas are required for binary and non-binary fields. However,
applications often require the use of polynomials over fields larger than F2.

For example, the “quadraticity test” of Gowers was first analyzed at large distances
by Green and Tao [GT08] over non-binary fields. The extension over F2 by Samorodnit-
sky [Sam07] required additional ideas. In the other direction, Alon, Kaufman, Krivele-
vich, Litsyn and Ron [AKK+03] gave an analysis of a low-degree test at small distances
over F2. Kaufman and Ron [KR06] introduced substantial new ideas to generalize this
test to other fields.

In this work, we generalize the XOR lemma of Viola and Wigderson [VW08] to arbi-
trary prime fields. Let Fq be a finite field of prime order q (identified with {0, ..., q − 1})
and let δ(f, g) = Prx[f(x) 6= g(x)] be the distance between f and g. In particular, we de-
fine δd(f) = minp of degree d δ(f, p), that is the distance between f and its nearest degree-d
polynomial p : Fnq → Fq. (See Section 2 for precise definitions.) We then prove the fol-
lowing.

THEOREM 1.1. Let q be any prime number, t > 0 be any integer, and f : Fnq → Fq
be any function. Let f+t : (Fnq )t → Fq be the sum over Fq of t independent copies of f ,
namely, f+t(x1, ..., xt) =

∑t
i=1 f(xi). If δd(f) ≥ q

(d+1)2d+1 ,

δd
(
f+t
)
>
q − 1

q
− q − 1

q
exp

(
− 3t

q2(d+ 1)22d+3

)
.

Otherwise,

δd
(
f+t
)
>
q − 1

q
− q − 1

q
exp

(
−3tδd(f)

q32d+2

)
.

Since δd(f) ≤ δ0(f) ≤ (q − 1)/q, Theorem 1.1 allows us to construct functions that
are arbitrarily close to having optimal hardness against degree-d polynomials over Fq,
by choosing t = t(d, q, ε, δd(f)) sufficiently large. Specializing Theorem 1.1 to the case
q = 2, we recover Theorem 1.2 of Viola and Wigderson.

Applying our argument, we show that addition modulo m is very hard to approxi-
mate by polynomials of degree d for every m coprime to q:

THEOREM 1.2. Let d ≥ 0 be any integer, q be any prime and m be any integer
coprime to q, where m < q. Define MODm : Fnq → Zm as MODm(x1, ..., xn) := x1 + x2 +
· · ·+ xn mod m, where + is the addition over Z. Then, for every degree-d polynomial p,

δ(MODm, p mod m) >
m− 1

m
− m− 1

m
exp

(
− 1

m2q
·
(
q − 1

q

)d+1

· n

2d+2

)
,

where δ(MODm, p mod m) = Prx[MODm(x) 6= p(x) mod m].
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Since δ(MODm, c) ≤ (m − 1)/m for some constant c, this bound is asymptotically tight
in m.

Hardness of modulo functions for low-degree polynomials for different settings of
parameters has been studied in several works [AB01; Bou05; GRS05; Cha06; VW08].
Directly applying our hardness amplification to a function f(x) = x mod m, we would
prove the hardness of another modulo function defined as (x1 mod m) + (x2 mod m) +
· · · + (xn mod m) over Fnq , similarly to Theorem 1.2. However, we then need an addi-
tional analysis for δd(f) to apply Theorem 1.1.

Our proof. We generalize the proof of Viola and Wigderson [VW08] over F2. Their
argument makes use of the Gowers d-norm ‖ · ‖Ud [Gow98; Gow01] (see Section 2 for
the definition). Starting from a function f : Fn2 → F2 that is mildly far from degree-d
polynomials over F2, Viola and Wigderson reason as follows: (1) From the low-degree
tests analysis of Alon et al. [AKK+03], we know that if f is mildly far from degree-d
polynomials, then ‖(−1)f‖Ud+1 is bounded away from one. (2) By the multiplicativity
of the Gowers norm, ‖(−1)f

+t‖Ud+1 = ‖(−1)f‖tUd+1 , so ‖(−1)f
+t‖Ud+1 is close to zero for

t sufficiently large. (3) For any polynomial p of degree d, we have ‖(−1)f
+t−p‖U1 ≤

‖(−1)f
+t‖2d+1

Ud+1 by a property of the Gowers norm, which is also close to zero from step
(2). So ‖(−1)f

+t−p‖U1 must be close to zero as well. The last quantity simply measures
the correlation between f+t and p, so p must be far from all degree-d polynomials over
F2.

Step (2) of this analysis extends easily to prime fields; step (3) requires some addi-
tional but standard technical tools (see Lemmas 4.2 and 4.3). However, step (1) relies
on the analysis of the low-degree test of Alon et al., which was designed specifically for
the binary field. Our main technical contribution is the extension of the analysis for
this test (in fact, a slight variant of it) to arbitrary prime fields, described in Section 3.
We believe that our presentation of this test is also simpler and more modular.

The test, which we call the Gowers test, works as follows: Given a function f : Fnq →
Fq, choose a random set of points x, y1, . . . , yd+1 ∈ Fnq , and query f at all inputs of
the form x + a1y1 + · · · + ad+1yd+1, where (a1, . . . , ad+1) ranges over {0, 1}d+1. If the
evaluations are consistent with a degree-d polynomial accept, otherwise reject. For
two functions f, g, f is called δ-far from g if Prx[f(x) 6= g(x)] ≥ δ. We show that if f is
δ-far from every degree-d polynomial, then the Gowers test performs 2d+1 queries and
rejects f with probability min{δ/q, 1/(d+ 1)2d+1} (See Theorem 3.2).

The Gowers test is a generalization for prime fields Fq of the low-degree test of Alon
et al. over F2.1 In analyses of [VW08] and ours, the distance of f from low-degree
polynomials required in step (1) is obtained from the rejection probability of these
tests. Alon et al. essentially showed their test performs 2d+1 queries and rejects f with
Ω(min{2dδ, 1/(d2d)}). Alon et al.’s test thus provides a better rejection probability than
the Gowers test over Fn2 if δ is small. Since the hardness amplification is analyzed by
the rejection probability of the tests, their test provides better hardness amplification
than that of the Gowers test in the case q = 2.

Let us call the collection of queries {x + a1y1 + · · · + ad+1yd+1 : (a1, . . . , ad+1) ∈
{0, 1}d+1} a subcube of Fnq . In the case q = 2, something special happens: With high
probability, a subcube of Fnq coincides with a rank d+ 1 affine subspace of Fnq . This fact
plays a crucial property in the analysis of Bhattacharyya et al. [BKS+10], who obtain

1 The original test of Alon et al. was actually for polynomials p evaluating 0 on the all-zero vector, i.e.,
p(0, ..., 0) = 0, but it can be naturally extended to a test for general polynomials.
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tight lower bounds (within a constant factor) on the rejection probability of the Gowers
test over F2.

The low-degree test of Kaufman and Ron [KR06] over general fields also works by
choosing a random affine subspace of appropriate dimension and checking that the
restriction of f on this space is a polynomial of degree d. Their work suggests that
the proper way to generalize the Gowers test to larger fields is by viewing it as a ran-
dom subspace test, and not a random subcube test. However, we do not see how the
Kaufman-Ron test can be used to argue hardness amplification. Unlike the Gowers
test, their test does not seem to be naturally related to the Gowers norm or any other
measure on functions that is multiplicative and bounds the correlation with degree-d
polynomials, and so we cannot proceed with steps (2) and (3) of the Viola-Wigderson ar-
gument. Jutla, Patthak, Rudra, and Zuckerman [JPRZ09] also proposed another low-
degree test over prime fields, which can be viewed as a kind of random subspace tests.
From a similar reason, we cannot apply their test to our analysis.

The Gowers test has higher query complexity than the Kaufman-Ron test.2 However,
its rejection probability is closely related to the Gowers norm over Fq (see Lemma 4.3),
and we can conclude the proof.

Our analysis of the Gowers test is a generalization of the linearity test analysis of
Blum, Luby, and Rubinfeld [BLR93]. Given a function f : Fnq → Fq that the test accepts
with high probability, they define a function g : Fnq → Fq that is close to f , and then
they argue that g must be linear. The linearity of g is proved using a self-reducibility
argument, which relates evaluations of g at arbitrary inputs to evaluations at random
inputs, where the identity g(x) + g(y) = g(x+ y) holds with high probability.

We proceed along the same lines: Given f , we define a function g that is close to f ,
and then argue that g must be a degree-d polynomial. To argue the second part, we
use a self-reducibility argument that relates evaluations of g at arbitrary subcubes to
evaluations at random subcubes. The main technical tool in the self-reduction argu-
ment is Claim 3.5, which to the best of our knowledge is a new identity about discrete
derivatives in finite fields.

A statement similar to Theorem 3.2 can be derived by specializing the results of
Kaufman and Sudan [KS08] on testing linear-invariant properties. Their result, which
uses only generic properties of linear-invariant functions, implies the existence of a
test that performs 2d+1 queries and rejects a function that is δ-far from all degree-
d polynomials with probability min{δ/2, 1/((2d+2 + 1)(2d+1 − 1))}. In the case when δ
is a constant independent of d, which is of interest in our application, their analysis
gives a rejection probability of about 1/4d, while our analysis which relies on specific
properties of polynomials improves the rejection probability to 1/d2d.

The reason why we assume prime fields in our results is that the characterization of
polynomials used in the Gowers test makes sense only over prime fields (Theorem 2.3).
We need to discover a new characterization of polynomials over non-prime fields con-
nected to the Gowers norm for further generalization.

2. PRELIMINARIES
Notions and notation. We begin with basic notions and notation. Let q be a prime

number. We denote by Fq, a finite field of prime order q, identified with the set Zq :=
{0, ..., q − 1}. Let F∗q be a set of non-zero elements in Fq, namely, Fq \ {0}. First, we
define multivariate polynomials over Fq.

2The Kaufman-Ron test makes q` queries, where ` = d(d + 1)/(q − q/p)e and q = pk for a prime p and
integer k. Recently Haramaty, Shpilka, and Sudan [HSS11] gave a test with q` queries and optimal (up to
constant factor) rejection probability of min{Ω(δd(f)q`),Ω(1)}.
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Definition 2.1 (polynomial). For an n-variate function f : Fnq → Fq and an integer
d ≥ 0, if f can be written as

f(x) =
∑

α∈Fn
q ,

∑n
i=1 αi≤d

Cα

n∏
j=1

x
αj

j ,

where each Cα ∈ Fq, then we call f a degree-d polynomial.

For multivariate polynomials over prime fields Fq, the so-called directional deriva-
tives can be defined for well-known characterization of polynomials over Fq.

Definition 2.2 ( directional derivative). Let G,H be any additive groups. For a func-
tion f : G→ H and an element y ∈ G, a derivative of f on y, denoted by ∆yf , is defined
as

∆yf(x) := f(x+ y)− f(x).

A k-th derivative of f on vectors y1, . . . , yk ∈ G is recursively defined such that

∆y1,...,ykf(x) := ∆y1,...,yk−1
(∆ykf(x)) .

The well-known characterization of degree-d polynomials over prime fields Fq with
(d+ 1)-th derivatives is given by the following (folklore) theorem3. The Gowers test is
derived from this characterization as shown in Section 3.

THEOREM 2.3 (CHARACTERIZATION OF POLYNOMIALS). For a function f : Fnq →
Fq, ∆y1,...,yd+1

f(x) = 0 for any x, y1, . . . , yd+1 ∈ Fnq if and only if f is a degree-d polyno-
mial.

PROOF. We first prove the “if” part by a simple induction on d. When d = 0, it is
obvious. Suppose that d-th derivatives of degree-(d − 1) polynomials on any d vectors
are identical to zero. Since ∆y1,...,yd+1

f = ∆y1,...,yd(∆yd+1
f)), it suffices to show ∆yf has

degree d−1 for any degree-d polynomial f and any y ∈ Fnq . By linearity, we can assume
f is a monomial as f(x1, ..., xn) :=

∏n
i=1 x

di
i without loss of generality. Then, we have

∆yf(x) = f(x + y) − f(x) =
∏n
i=1(xi + yi)

di −
∏n
i=1 x

di
i . Since the term

∏n
i=1 x

di
i of the

maximum degree d is cancelled out in the righthand side, ∆yf(x) has degree at most
d− 1.

We next prove the “only if” part also by induction on d . Noting that the initial case
d = 0 is trivial, we now assume the claim holds for d and suppose that ∆y1,...,yd+1

f(x) =
0. Therefore

∆y1,...,yd(∆yd+1
f)(x) = 0.

By the inductive assumption, ∆yf is a degree-(d − 1) polynomial gy for every y ∈ Fnq .
We have that

f(x+ y)− f(x) = gy(x)

for every x and y. Let ei be the vector with 1 in coordinate i and 0 elsewhere. Let
y<i = (y1, . . . , yi−1, 0, . . . , 0). Then by telescoping

f(y)− f(0) =

n∑
i=1

(
f(y<i + yiei)− f(y<i)

)
=

n∑
i=1

yi∑
k=1

gei(y<i + kei)

3A proof of Theorem 2.3 appears in, e.g., Terence Tao’s Weblog [Tao08].
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since the underlying field has a prime order. We show
∑yi
k=1 gei(y<i + kei) has degree

at most d for any degree-(d− 1) polynomial gei . It suffices to consider the case that gei
is a monomial, namely, gei(y1, ..., yn) :=

∏dj
j=1 y

dj
j . In this case, we have

yi∑
k=1

gei(y<i + kei) =

i−1∏
j=1

y
dj
<i,j

(
yi∑
k=1

kdi

)
.

Since
∑yi
k=1 k

di is a polynomial of degree at most di+1 in yi, the degree of
∑yi
k=1 gei(y<i+

kei) is at most d+ 1.

Note that the characterization of Theorem 2.3 for degree-d polynomials does not hold
over non-prime fields in general.

The distance is one of the central notions of this paper, which is formally defined as
follows.

Definition 2.4 ( distance). For functions f, g : G → H, the distance between f and
g is defined as δ(f, g) := Prx∈G [f(x) 6= g(x)]. The distance between a function f and the
set of all the degree-d polynomials is defined as δd(f) := minp∈Pd,n

δ(f, p), where Pd,n is
the set of all degree-d n-variate polynomials.

Gowers uniformity. The Gowers norm is a measure for correlation between func-
tions and low-degree polynomials over finite fields. This measure was originally intro-
duced by Gowers [Gow98; Gow01] to give an alternative proof of Szemerédi’s theorem.
In this paper, we use a variant of the Gowers norm for technical convenience. We call
it the Gowers uniformity here.

Definition 2.5. For every function f : Fnq → Fq and every integer k ≥ 0, the degree-k
Gowers uniformity Uk(f) is defined as

Uk(f) := E
x,y1,...,yk∈Fn

q

[
ω

∆y1,...,yk
f(x)

q

]
,

where ωq := exp(2πi/q) and E[·] is the expectation.

Let f : Fnq → {ωaq }a∈{0,...,q−1}. Then, we can represent f as f(x) := ω
2πig(x)
q for some

function g : Fnq → Fq. The original degree-k Gowers norm ‖f‖Uk of f is defined by
‖f‖Uk := (Uk(g))1/2k

. Our target is the functions of range Fq rather than those of range
{ωaq }a∈{0,...,q−1} and the test for such functions. So, it is necessary to modify the original
Gowers norm to fit the definition to such functions.

Equivalently, we can define the Gowers uniformity inductively. For a function f :
Fnq → Fq and a vector y ∈ Fnq , let T yf be a shift of f on y such that T yf(x) = f(x + y).
Then, we define

U0(f) := E
x∈Fn

q

[
ωf(x)
q

]
, U1(f) :=

∣∣∣∣∣ E
x∈Fn

q

[
ωf(x)
q

]∣∣∣∣∣
2

,

Uk(f) := E
y∈Fn

q

[Uk−1(T yf − f)] for k ≥ 2. (1)

The equivalence between two definitions of the Gowers uniformity can be easily veri-
fied from the relation Eyk [Uk−1(T ykf−f)] = Ex,y1,...,yk−1,yk [ω

∆x,y1,...,yk−1
{f(x+yk)−f(x)}

q ] =

Ex,y1,...,yk−1,yk [ω
∆x,y1,...,yk−1,yk

f(x)
q ] = Uk(f).

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 2013.



Hard Functions for Low-degree Polynomials over Prime Fields 0:7

Remark 2.6. If k ≥ 1, the degree-k Gowers uniformity Uk(f) is a non-negative real
number, namely Uk(f) = |Uk(f)|.

The Gowers uniformity has the following important properties.

PROPOSITION 2.7. For any function f : Fnq → Fq, the following statements hold:

(1) |Uk(f)| ≤
√
Uk+1(f) for any integer k ≥ 0

(2) Ud+1(f − p) = Ud+1(f) for any degree-d polynomial p : Fnq → Fq
(3) Uk(f+t) = (Uk(f))

t for any integers k ≥ 0 and t > 0,

where f+t :
(
Fnq
)t → Fq is the sum of t independent copies of f defined as

f+t(x(1), . . . , x(t)) := f(x(1)) + f(x(2)) + · · ·+ f(x(t))

for an integer t > 0.

These properties can be shown by arguments used in [Gow98; Gow01] for the Gowers
norm, and thus we omit proofs of them.

3. GOWERS TEST
Next, we consider a low-degree test for polynomials, which we call the Gowers test. The
Gowers test is derived from the characterization of polynomials given in Theorem 2.3.

Definition 3.1 (Gowers test). The degree-d Gowers test for a function f : Fnq → Fq,
denoted by GTd(f), is the following procedure:

(1) Pick x, y1, . . . , yd+1 ∈ Fnq uniformly and independently at random;
(2) Accept if and only if ∆y1,...,yd+1

f(x) = 0.

We denote by ρd(f) the rejection probability of GTd(f).

By Theorem 2.3, if f has degree at most d, GTd(f) accepts with probability 1. Our
question is how large the rejection probability is in the case when f is not a degree-
d polynomial. An answer to this question is given in the following theorem, which
estimates the rejection probability ρd(f) of the Gowers test GTd(f).

THEOREM 3.2. Let f be any function Fnq → Fq. Then

ρd(f) ≥ min

{
δd(f)

q
,

1

(d+ 1)2d+1

}
.

PROOF. The proof is immediately obtained from the following main lemma:

LEMMA 3.3. Let f : Fnq → Fq and ε < 1
(d+1)2d+1 . If ρd(f) ≤ ε, then δd(f) ≤ qε.

From Lemma 3.3, Theorem 3.2 can be proven as follows. If ρd(f) ≥ 1/(d + 1)2d+1,
we are done. So, assume that ρd(f) < 1/(d + 1)2d+1. Let ε := ρd(f). By Lemma 3.3,
δd(f) ≤ qε = qρd(f). Then we obtain ρd(f) ≥ δd(f)/q. Hence, the theorem follows.

Now, we prove the main lemma.

PROOF OF LEMMA 3.3. Our proof of this lemma is a generalization of the linearity
test analysis of Blum, Luby, and Rubinfeld [BLR93], using ideas from the work of Alon
et al. [AKK+03] on higher degree polynomials over F2. Namely, we construct a function
g such that

(1). g(x) = 0 for all but at most qε fraction of inputs x and
(2). g(x)− f(x) is a degree-d polynomial.

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 2013.



0:8 A. Bogdanov et al.

We define

g(x) = the plurality value of ∆y1,...,yd+1
f(x), where y1, . . . , yd+1 ∈ Fnq ,

where if the plurality value is not unique, we define g(x) as an arbitrary value from
the plurality ones. Property (1) is almost immediate: If g(x) 6= 0, it follows that
Pry1,...,yd+1

[∆y1,...,yd+1
f(x) 6= 0] ≥ 1/q, so if g(x) 6= 0 for more than a qε fraction of

xs, it would follow that the Gowers test rejects with probability more than (qε)/q = ε,
a contradiction.

We now prove property (2). We begin by showing that for all x, g(x) not only agrees
with the plurality value of ∆y1,...,yd+1

f(x), but in fact with a vast majority:

CLAIM 3.4. For all x ∈ Fnq , Pry1,...,yd+1
[g(x) = ∆y1,...,yd+1

f(x)] ≥ 1− (d+ 1)ε.

PROOF OF CLAIM 3.4. First note that we use shorthand notation ∆yf =
∆y1,...,yd+1

f for y = (y1, . . . , yd+1) ∈ (Fnq )d+1. Fix x and let y = (y1, . . . , yd+1) and
z = (z1, . . . , zd+1) be independent random (d+ 1)-tuples of random points in Fnq . Then

Pr[∆yf(x) = ∆zf(x)] =
∑
t∈Fq

Pr[∆yf(x) = ∆zf(x) = t]

=
∑
t∈Fq

Pr[∆yf(x) = t]2 ≤ max
t∈Fq

Pr[∆yf(x) = t] = Pr[∆yf(x) = g(x)]

so it is sufficient to show that Pr[∆yf(x) = ∆zf(x)] ≥ 1 − (d + 1)ε, or Pr[∆yf(x) 6=
∆zf(x)] ≤ (d + 1)ε. To do so, we define the hybrid distributions w0, . . . ,wd+1, where
wi = (z1, . . . , zi, yi+1, . . . , yd+1) and w0 = (y1, . . . , yd+1). Then

Pr[∆yf(x) 6= ∆zf(x)] = Pr[∃i, 1 ≤ i ≤ d+ 1: ∆wi−1
f(x) 6= ∆wi

f(x)]

≤
d+1∑
i=1

Pr[∆wi−1f(x) 6= ∆wif(x)] = (d+ 1) · Pr[∆w0f(x) 6= ∆w1f(x)]

The last equality follows from the symmetry of the derivatives; that is, for every i:

Pr[∆z1,...,zi−1,zi,yi+1,...,yd+1
f(x) = ∆z1,...,zi−1,yi,yi+1,...,yd+1

f(x)]

= Pr[∆zi,z1,...,zi−1,yi+1,...,yd+1
f(x) = ∆yi,z1,...,zi−1,yi+1,...,yd+1

f(x)]

= Pr[∆z1,z2,...,zd+1
f(x) = ∆y1,z2,...,zd+1

f(x)].

It remains to show that Pr[∆w0
f(x) 6= ∆w1

f(x)] ≤ ε:

Pr[∆w0f(x) 6= ∆w1f(x)] = Pr[∆y1,y2,...,yd+1
f(x) 6= ∆z1,y2,...,yd+1

f(x)]

= Pr[∆y1,y2,...,yd+1
f(x)−∆z1,y2,...,yd+1

f(x) 6= 0]

= Pr[∆y2,...,yd+1
f(x+ y1)−∆y2,...,yd+1

f(x+ z1) 6= 0]

= Pr[∆y1−z1,y2,...,yd+1
f(x+ z1) 6= 0]

= Pr
x′,y′

[∆y′f(x′) 6= 0] = ε.

We will also make use of the following identity. For a ∈ {0, 1}d+1, let |a| = a1 + · · · +
ad+1.
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CLAIM 3.5. For all x, y1, . . . , yd+1, z1, . . . , zd+1 ∈ Fnq ,

∆z1,...,zd+1
f(x) =

∑
a∈{0,1}d+1

(−1)|a|∆y1−a1z1,...,yd+1−ad+1zd+1
f

(
x+

d+1∑
i=1

aizi

)
.

PROOF OF CLAIM 3.5. By induction on d. For d = 1, a calculation shows that

∆z1f(x) = ∆y1f(x)−∆y1−z1f(x+ z1). (2)

The inductive step is obtained by iterating this identity. Suppose that we know the
identity holds for d− 1, namely

∆z2,...,zd+1
f(x) =

∑
a∈{0,1}d+1

(−1)|a|∆y2−a2z2,...,yd+1−ad+1zd+1
f

(
x+

d+1∑
i=2

aizi

)
.

Applying (2) to the function ∆z2,...,zd+1
f we have

∆z1,...,zd+1
f(x) = ∆y1∆z2,...,zd+1

f(x)−∆y1−z1∆z2,...,zd+1
f(x+ z1).

Using the inductive hypothesis on ∆z2,...,zd+1
f and linearity of derivatives, we obtain

the desired formula.

We are now in a position to prove that g−f is a polynomial of degree d. By Claim 3.4,
we have that

Pr
y1,...,yd+1

[
g

(
x+

d+1∑
i=1

aizi

)
6= ∆y1−a1z1,...,yd+1−ad+1zd+1

f

(
x+

d+1∑
i=1

aizi

)]
≤ (d+ 1)ε

for all x, z1, . . . , zd+1 ∈ Fnq , and a ∈ {0, 1}d+1. Taking a union bound over all a ∈ {0, 1}d+1

it follows that

Pr
y1,...,yd+1

[
∃a : g

(
x+

d+1∑
i=1

aizi

)
6= ∆y1−a1z1,...,yd+1−ad+1zd+1

f

(
x+

d+1∑
i=1

aizi

)]
≤ 2d+1 · (d+ 1)ε < 1.

Therefore, there must exist values for y1, . . . , yd+1 such that

g

(
x+

d+1∑
i=1

aizi

)
= ∆y1−a1z1,...,yd+1−ad+1zd+1

f

(
x+

d+1∑
i=1

aizi

)
for all x, z1, . . . , zd+1 in Fnq and a ∈ {0, 1}d+1. But then by Claim 3.5,

∆z1,...,zd+1
g(x) =

∑
a∈{0,1}d+1

(−1)|a|g

(
x+

d+1∑
i=1

aizi

)

=
∑

a∈{0,1}d+1

(−1)|a|∆y1−a1z1,...,yd+1−ad+1zd+1
f

(
x+

d+1∑
i=1

aizi

)
= ∆z1,...,zd+1

f(x),

and so ∆z1,...,zd+1
(f − g)(x) = 0 for all x, z1, . . . , zd+1, namely, f − g is a degree-d polyno-

mial. Therefore, Lemma 3.3 follows.
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Remark 3.6. Lemma 4.5 in [TZ08] provides a similar result to Lemma 3.3. This
lemma shows if ρd(f) approaches to 0 then f also approaches to some degree-(d − 1)
polynomial, as Lemma 3.3 claims. The main difference between their lemma and ours
is precise estimation for distance to degree-(d − 1) polynomials. For our purpose, we
need to estimate how close f is to such polynomials with the parameters n, d, and q,
but this lemma only guarantees that the distance converges to 0 as ε approaches to 0.

4. HARDNESS AMPLIFICATION
Our goal is to construct a hard function for low-degree polynomials (in other words, a
function far from low-degree polynomials) from a mildly hard function for low-degree
polynomials (in other words, a function mildly far from low-degree polynomials). Recall
that, for a function f : Fnq → Fq and an integer t > 0, a function f+t : (Fnq )t → Fq is
defined as

f+t(x(1), . . . , x(t)) := f(x(1)) + f(x(2)) + · · ·+ f(x(t)).

We prove that f+t is very hard for low-degree polynomials if f is mildly hard for low-
degree polynomials. Recall that δd(f) ≤ q−1

q for any function f . Hence our goal is to
prove δd(f+t) ≥ q−1

q − ε for some small ε.

THEOREM 4.1. Let f be any function and t > 0 be any integer. Then

δd
(
f+t
)
>
q − 1

q
− q − 1

q
exp

(
− 3t

q2 · 2d+2
· ρd(f)

)
.

Note that our main theorem (Theorem 1.1) in Section 1 immediately follows from this
theorem and the lower bound of the rejection probability of the Gowers test (Theo-
rem 3.2).

PROOF. We first state two lemmas on relations between the distance from degree-d
polynomials and the Gowers uniformity and between the Gowers uniformity and the
rejection probability of the Gowers test.

LEMMA 4.2 (DISTANCE TO UNIFORMITY). For any function f : Fnq → Fq and any
integer d,

δd(f) ≥ q − 1

q
− q − 1

q
E

a∈F∗q

[
(Ud+1(af))

1/2d+2
]
.

LEMMA 4.3 (UNIFORMITY TO TEST). For any function f : Fnq → Fq and any integer
d ≥ 0,

Ud+1(f) < 1− 3

q2
ρd(f).

(Recall that ρd(f) is the rejection probability of the Gowers test GTd(f).)

We first assume that these lemmas hold in order to prove Theorem 4.1. (The proofs of
these lemmas are given later.)

Note that the distance δd(f) is lower bounded by q−1
q minus the term involved with

Ea∈F∗q
[
(Ud+1(af))

1/2d+2
]

in Lemma 4.2. One can easily see that the expectation is not
required in the binary case, as in [VW08]. Hence, our analysis needs some technical
tricks for the general case.
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We can prove Theorem 4.1 using these two lemmas, Proposition 2.7 and Theorem 3.2.
By Lemma 4.2 and the averaging principle, there is an α ∈ F∗q such that

δd(f
+t) ≥ q − 1

q
− q − 1

q

(
Ud+1(αf+t)

)1/2d+2

.

By the property of the Gowers uniformity (Proposition 2.7 (3)),(
Ud+1(αf+t)

)1/2d+2

= (Ud+1(αf))
t/2d+2

.

Then, by Lemma 4.3,

(Ud+1(αf))
t/2d+2

<

(
1− 3

q2
ρd(f)

)t/2d+2

< exp

(
− 3

q2
· t

2d+2
ρd(f)

)
.

Note that ρd(αf) = ρd(f) since ∆y1,...,yd+1
(αf(x)) = 0 if and only if ∆y1,...,yd+1

f(x) = 0,
for all x, y1, . . . , yd+1 ∈ Fq and all α ∈ F∗q . Therefore

δd
(
f+t
)
>
q − 1

q
− q − 1

q
exp

(
− 3t

q2 · 2d+2
· ρd(f)

)
.

Therefore, Theorem 4.1 follows if Lemmas 4.2 and 4.3 hold. We finally prove these
lemmas below.

PROOF OF LEMMA 4.2. Let p be a degree-d polynomial satisfying δd(f) = δ(f, p). By
Proposition 2.7, for all a ∈ F∗q

U1 (a(f − p)) = U1(af − ap) ≤ (Ud+1(af − ap))1/2d+1

= (Ud+1(af))
1/2d+1

since ap is a degree-d polynomial. Hence

E
a∈F∗q

[
(Ud+1(af))

1/2d+2
]
≥ E
a∈F∗q

[
(U1 (a(f − p)))1/2

]
.

Now we provide a lower bound of Ea∈F∗q
[
(U1 (a(f − p)))1/2

]
.

By the definition and the triangle inequality,

E
a∈F∗q

[
(U1 (a(f − p)))1/2

]

= E
a∈F∗q

∣∣∣∣∣ E
x∈Fn

q

[
ωa(f(x)−p(x))
q

]∣∣∣∣∣ =
1

q − 1

q−1∑
a=1

∣∣∣∣∣∣
q−1∑
j=0

ωajq Pr
x

[f(x)− p(x) = j]

∣∣∣∣∣∣
≥ 1

q − 1

∣∣∣∣∣∣
q−1∑
a=1

q−1∑
j=0

ωajq Pr
x

[f(x)− p(x) = j]

∣∣∣∣∣∣
=

1

q − 1

∣∣∣∣∣∣
q−1∑
a=1

ω0
q Pr
x

[f(x)− p(x) = 0] +

q−1∑
a=1

q−1∑
j=1

ωajq Pr
x

[f(x)− p(x) = j]

∣∣∣∣∣∣ .
The first term is

q−1∑
a=1

ω0
q Pr
x

[f(x)− p(x) = 0] = (q − 1) Pr
x

[f(x) = p(x)] = q − 1− (q − 1)δd(f).
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The second term is
q−1∑
a=1

q−1∑
j=1

ωajq Pr
x

[f(x)− p(x) = j] =

q−1∑
j=1

Pr
x

[f(x)− p(x) = j]

q−1∑
a=1

ωajq

= −
q−1∑
j=1

Pr
x

[f(x)− p(x) = j] = −δd(f)

since
∑q−1
a=1 ω

aj
q = −1 if j ∈ F∗q . Hence

E
a∈F∗q

[
(U1 (a(f − p)))1/2

]
≥ 1

q − 1
|q − 1− qδd(f)|

=

∣∣∣∣1− q

q − 1
δd(f)

∣∣∣∣ ≥ 1− q

q − 1
δd(f).

The last inequality is derived from the reverse triangle inequality.
Therefore

δd(f) ≥ q − 1

q
− q − 1

q
E

a∈F∗q

[
(U1 (a(f − p)))1/2

]
≥ q − 1

q
− q − 1

q
E

a∈F∗q

[
(Ud+1(af))

1/2d+2
]
.

PROOF OF LEMMA 4.3. From the definition,

Ud+1(f) = E
x,y1,...,yd+1

[
ω

∆y1,...,yd+1
f(x)

q

]
=

q−1∑
j=0

ωjq Pr
x,y1,...,yd+1

[
∆y1,...,yd+1

f(x) = j
]

= Pr
x,y1,...,yd+1

[
∆y1,...,yd+1

f(x) = 0
]

+

q−1∑
j=1

ωjq Pr
x,y1,...,yd+1

[
∆y1,...,yd+1

f(x) = j
]
.

Now, we have Im(Ud+1(f)) = i
∑q−1
j=1 sin

(
2πj
q

)
Pr
[
∆y1,...,yd+1

f(x) = j
]

= 0 since
the Gowers uniformity Ud+1(f) is a real number. So, recalling that ρd(f) =
Prx,y1,...,yd+1

[
∆y1,...,yd+1

f(x) 6= 0
]
,

Ud+1(f) = 1− ρd(f) +

q−1∑
j=1

cos

(
2πj

q

)
Pr

x,y1,...,yd+1

[
∆y1,...,yd+1

f(x) = j
]

≤ 1− ρd(f) + cos

(
2π

q

) q−1∑
j=1

Pr
x,y1,...,yd+1

[
∆y1,...,yd+1

f(x) = j
]

= 1− ρd(f) + cos

(
2π

q

)
ρd(f)

< 1− 3

q2
ρd(f).

Thus, the proof of Theorem 4.1 is completed.
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5. HARDNESS OF MODM

Let m,n be integers, and let q be a prime. The function MODm : Fnq → Zm is defined as

MODm(x) := x1 + x2 + · · ·+ xn mod m,

where 1 < m < q and + is the addition over Z. In this section, we estimate the distance
between MODm and low-degree polynomials.

Since the range of MODm is Zm, we define the distance δd between MODm and
degree-d polynomials as follows:

δd(MODm) := min
p∈Pd,n

Pr
x∈Fn

q

[MODm(x) 6= (p(x) mod m)].

Namely, we identify a standard polynomial (from Fnq to Fq) modulo m as a polynomial
from Fnq to Zm here. Also, we modify the definition of the Gowers uniformity Ud(f) for
such functions f : Fnq → Zm:

Ud(f) := E
x,y1,...,yd∈Fn

q

[
ω

∆y1,...,yd
f(x)

m

]
. (3)

It is easy to see the same properties given in Proposition 2.7 hold for this definition as
before.

We prove the hardness of MODm for low-degree polynomials in the following theo-
rem.

THEOREM 5.1. Let d ≥ 0 be any integer, q be any prime, and m be any integer
coprime to q, where m < q. Then,

δd(MODm) >
m− 1

m
− m− 1

m
exp

(
− 1

m2q
·
(
q − 1

q

)d+1

· n

2d+2

)
.

PROOF. By the almost same proof as that of Lemma 4.2, we have, for MODm : Fnq →
Zm and any integer d,

δd(MODm) ≥ m− 1

m
− m− 1

m
E

a∈F∗q

[
(Ud+1(aMODm))

1/2d+2
]
.

Therefore, from the averaging argument, there is an α ∈ F∗q such that

δd(MODm) ≥ m− 1

m
− m− 1

m
(Ud+1(αMODm))

1/2d+2

.

Let f : Fq → Zm be the 1-variable function defined by f(x) = x mod m. Then, we have
Ud+1(αMODm)1/2d+2

= Ud+1(αf)n/2
d+2

since the same properties as those in Proposi-
tion 2.7 hold even for the Gowers uniformity of Equation (3) , as stated above. So, we
now estimate an upper bound of Ud+1(αf) by using the following claim.

CLAIM 5.2. For any function f , the following properties hold:

(1) If yi = 0 for some i, then ω
∆y1,...,yd+1

f
m ≡ 1.

(2) If ωfm is not a constant function and yi 6= 0 for all i, then ω
∆y1,...,yd+1

f
m is not a

constant function.

PROOF. We first show property 1. By the symmetry of derivatives, we can suppose
that yd+1 = 0 without loss of generality. Then, for any x,

∆y1,...,yd,yd+1
f(x) = ∆y1,...,yd (f(x+ 0)− f(x)) = 0.

ACM Journal Name, Vol. 0, No. 0, Article 0, Publication date: 2013.



0:14 A. Bogdanov et al.

Thus, ω
∆y1,...,yd+1

f(x)
m = 1 for any x.

We next prove property 2. We show the following statement: “If ωfm is not a constant,
then ω

∆yf
m is not a constant function for every nonzero y ∈ F∗q .” Repeatedly applying

this statement, we obtain property 2.
We prove its contrapositive. Suppose ω∆yf(x)

m is a constant function for some nonzero
y ∈ Fq. Then it must be that for every x ∈ Fq:

f((x+ y) mod q)− f(x mod q) ≡ c mod m.

Plugging in x := x+ y, x+ 2y, . . . , x+ (q − 1)y, we obtain

f((x+ 2y) mod q)− f((x+ y) mod q) ≡ c mod m,

f((x+ 3y) mod q)− f((x+ 2y) mod q) ≡ c mod m,

...
f((x+ qy) mod q)− f((x+ (q − 1)y) mod q) ≡ c mod m.

If we add these equations, on the left hand side we obtain zero, and on the right hand
side we obtain qc mod m, which equals zero only if c = 0. If c = 0, then f is a constant
function since we have ∆yf(x) ≡ 0 mod m.

By Claim 5.2, we have for some nonzero 0 < α′ < m

E
x,y1,...,yd+1

[
ω
α∆x,y1,...,yd+1

f(x)
m

]
≤ 1

qd+2

{(
qd+2 − (q − 1)d+1 · q

)
· 1 + (q − 1)d+1

∣∣∣(q − 1) · 1 + ωα
′

m

∣∣∣}
< 1− 1

m2q

(
q − 1

q

)d+1

.

From this estimation, the theorem immediately follows.
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