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Abstract. Goldreich (ECCC 2000) suggested a simple construction
of a candidate one-way function f : {0, 1}n → {0, 1}m where each bit
of output is a fixed predicate P of a constant number d of (random)
input bits. We investigate the security of this construction in the regime
m = Dn, where D(d) is a sufficiently large constant. We prove that for
any predicate P that correlates with either one or two of its inputs, f
can be inverted with high probability.
We also prove an amplification claim regarding Goldreich’s construction.
Suppose we are given an assignment x′ ∈ {0, 1}n that has correlation
ε > 0 with the hidden assignment x ∈ {0, 1}n. Then, given access to x′,
it is possible to invert f on x with high probability, provided D = D(d, ε)
is sufficiently large.
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1. Introduction

Oded Goldreich (Goldreich 2000a) proposed a very simple construction of a
conjectured one-way function:

1. From the family of bipartite graphs with n vertices on the left, m vertices
on the right, and regular right-degree d, randomly choose a graph G.

2. From all predicates mapping {0, 1}d to {0, 1}, randomly choose a predi-
cate P .

3. Based on the chosen graph G and predicate P , let f = fG,P be the
function from {0, 1}n to {0, 1}m defined by

f(x)j = the jth bit of f(x) = P (xΓ(j,1), . . . , xΓ(j,d))

where Γ(j, k) is the kth neighbor of right vertex j of G.
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Goldreich conjectured that when m = n and d is constant, for most graphs G
and predicates P , the resulting function is one-way.1

In this work we investigate Goldreich’s construction in the setting where
the graph G is random, d is constant, and m = Dn for a sufficiently large
constant D = D(d). We show that for this setting of parameters, Goldreich’s
construction is not secure for predicates correlating with one input or with a
pair of the inputs. (As d increases, most predicates are of this type.)

We also show that if we are given a “hint” x′ – any assignment that has
nontrivial correlation with the actual input x to the one-way function – it is
possible to invert f on x, as long as D is a sufficiently large constant which
depends on both d and the correlation between x and x′.

Our results indicate that the security of Goldreich’s construction is fairly
sensitive on the output to input length ratio m/n. We show that when m/n
is a sufficiently large constant (depending on d), for a large class of predicates
the function can be inverted on a large fraction of inputs. It is also known
that when m/n is smaller than 1/(d− 1) the function can be inverted for every
predicate P , since with high probability the “constraint hypergraph” splits into
components of size O(log n) (Schmidt & Shamir 1985).

Our analysis leaves open the possibility that for specific choices of P that
fall outside our characterization, the function is one-way even when the output
is much longer than the input. Consider any predicate P which is balanced,
does not correlate with any of its inputs, and does not correlate with any pair
of its inputs. Even when m is substantially larger than n, say m = n1.1, we
do not know of any method for inverting Goldreich’s function based on the
predicate P . In fact, we do not even know whether the output of this function
can be efficiently distinguished from a random string of length m.

1.1. Goldreich’s function and Cryptography in NC0. Goldreich’s pro-
posal for a one-way function has several features that were absent from earlier
proposals: (1) It is extremely simple to implement, and (2) it is very fast to
compute, especially in parallel. On the other hand, the conjectured security
of Goldreich’s function is not known to relate to any standard assumptions in
cryptography, such as hardness of factoring or hardness of finding short vectors
in lattices.

The design of cryptographic constructions in NC0 (i.e., constructions where
every output bit depends on a constant number of input bits) has since been

1More precisely, Goldreich conjectures that for any fixed family of graphs {Gn} with
certain expansion properties and most predicates P on d bits, the family of functions {fGn,P }
is one-way.
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extended to other cryptographic primitives, in particular pseudorandom gener-
ators. Remarkably, Applebaum et al. (2004) showed that pseudorandom gener-
ators (and in particular one-way functions) in NC0 can be obtained under many
commonly used assumptions (such as hardness of discrete logarithm, hardness
of factoring, and hardness of finding short vectors in lattices). In a different
work, Applebaum et al. (2006) gave a different construction of a pseudorandom
generator with linear stretch using the less standard assumption that certain
random linear codes are hard to decode.

The results of Applebaum et al. (2004, 2006) are obtained by starting with
known constructions of cryptographic primitives that reside outside NC0, and
transforming them into NC0 variants that are secure under the same hardness
assumption. These transformations entail a loss of parameters. To yield rea-
sonable hardness, these constructions require fairly large input length. Also,
pseudorandom generators obtained using this process have only small linear
stretch. It is not known whether a pseudorandom generator that stretches
n bits of input into, say, n1.1 bits of output can be obtained under similar
assumptions.

For this reason, we believe that it is interesting to investigate direct con-
structions of pseudorandom primitives in NC0, which have the potential to
yield better parameters. In this direction, Mossel et al. (2003) proposed the
construction of a pseudorandom generator in NC0 with potentially superlinear
stretch. They proved that for any constant c, there is a function in NC0 that
maps n bits to nc bits and is pseudorandom against all linear tests.

More recently, Applebaum et al. (2010) showed that for certain choices
of the predicate P , Goldreich’s function (with slightly superlinear stretch) is
pseudorandom against linear tests, low-degree polynomial tests, and tests im-
plemented by polynomial-size constant-depth circuits.

Cook et al. (2009) showed that a restricted class of algorithms called “my-
opic algorithms” take exponential time to invert Goldreich’s construction. The
kinds of algorithms used in this work are not myopic.2

1.2. Our Results. We state our main results. We say that algorithm A in-
verts function f : {0, 1}n → {0, 1}m on input x if A(f, f(x)) returns a preimage
for f(x), where x ∈ {0, 1}n. For our second application we will also allow A to
take as part of its input some auxiliary information. Our definition is slightly
non-standard (see Definition 2.4.3 in Goldreich (2000b)) as the inverter takes
the description of the function it is supposed to invert as part of its input.

2Out of the algorithms used here, only the algorithm from Section 3.1 can be naturally
viewed as myopic.
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This is convenient when working with Goldreich’s function on a random graph
(which is essentially a non-uniform function family), as it allows for the de-
scription of the graph to be furnished to the algorithm.

To state the theorems, we need to define three standard combinatorial prop-
erties of a predicate P : {0, 1}d → {0, 1}. The single variable correlation of P
is the quantity

γ1(P ) = max
i∈[d]
|Pr[P (z) = zi]− Pr[P (z) 6= zi]|.

The pairwise correlation of P is the quantity

γ2(P ) = max
i 6=j,i,j∈[d]

|Pr[P (z) = zi ⊕ zj]− Pr[P (z) 6= zi ⊕ zj]|.

The boundary of P is the quantity

β(P ) = Prz∼{0,1}d [∃z′, |z − z′| = 1: P (z) 6= P (z′)].

In all cases, z is chosen uniformly at random from {0, 1}d. Notice that the
values of these quantities are multiples of 2−d. Moreover, for any non-constant
predicate, β(P ) is nonzero. It is well known that if P is balanced then β(P ) =
Ω(d−1/2).

We now state our main theorems. The first two theorems give inversion
algorithms for predicates that correlate with one or a pair of the inputs, pro-
vided that the output length to input length ratio is sufficiently large. All of
the theorems refer to the function family fG,P : {0, 1}n → {0, 1}m with m = Dn
and P : {0, 1}d → {0, 1}. The quantities γ1, γ2, and β refer to the predicate P .

Theorem 1.1. Let K be a sufficiently large constant. Assume that γ1 >
0, d ≤ βn1/K/K, and D ≥ max{K/γ2

1 log(d/β), (d/β)K}. Then for every
r ≤ (β/d)Kn, there exists an algorithm that runs in time D3nO(r) and inverts
fG,P (x) for a 1−O(n−r) fraction of pairs (G, x).

Theorem 1.1 gives a family of algorithms that exhibit a tradeoff between
running time and success probability. When r is a constant, the inverter runs
in polynomial time and succeeds on an inverse polynomial fraction of inputs.
Also, observe that while the output is required to be always longer than the
input, when γ1 and β are not too small, for instance inverse polynomial in d,
then the inverter succeeds even when m = poly(d) · n.
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Theorem 1.2. Let K be a sufficiently large constant. Assume that γ2 > 0,
d ≤ βn1/K/K, and D ≥ K(d/βγ2)K . Then for every r ≤ (β/d)Kn, there exists
an algorithm that runs in time D3nO(r) and inverts fG,P (x) for a 1 − O(n−r)
fraction of pairs (G, x).

Our last theorem gives an inversion algorithm that applies to all predicates,
but requires knowledge of a pre-image x′ of fG,P (x) that correlates with x
(the formal definition of correlation between a pair of assignments is given in
Section 2). In this theorem, we require D to be at least polynomial in (1/ε)d.

Theorem 1.3. Let K be a sufficiently large constant, ε > 0, and D ≥
2Kd/ε2d−2. Let P : {0, 1}d → {0, 1} be any predicate. Then for every r ≤
2−Kdn, there exists an algorithm that runs in time polynomial in D and nr

with the following property. For a 1−O(n−r) fraction of pairs (G, x) and every
assignment x′ that has correlation at least ε (in absolute value) with x, on
input (fG,P , fG,P (x), x′), A outputs an inverse for fG,P (x).

Our results also generalize to the case where different predicates are used to
compute different bits of the output. To simplify the presentation, we restrict
our proofs to the case when the same predicate is used.

1.3. Our Approach. The problem of inverting Goldreich’s function is some-
what analogous to the problem of reconstructing assignments to random 3SAT
formulas in the planted 3SAT model. We exploit this analogy and show that
several of the tools developed for planted 3SAT can be applied to our setting
as well.

The proofs of our theorems are carried out in two stages. In the first stage,
we almost invert f in the sense that we find an assignment z that matches the
hidden assignment x on a 99% fraction of positions. In the second stage we
turn z into a true inverse for f(x). The second stage is common to the proofs
of all theorems.

To give some intuition about the first stage in Theorem 1.1, suppose for
instance that P is the majority predicate. Then we try to guess a the value of
the input bit xi by looking at all constraints where xi appears and taking the
majority of these values. Since xi has positive correlation with the majority
predicate, we expect this process to result in a good guess for most xi that
appear in a sufficiently large number of clauses. In fact, if f has about n log n
bits of output, this reconstructs the assignment completely; if m = Dn for
a sufficiently large constant D, a large constant fraction of the bits of x is
recovered. This argument, which applies to any predicate that correlates to
one of its inputs, is given in Section 3.1.
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For Theorem 1.2, we view each output of f as a noisy indicator for the
value of the parity of the pair of inputs it correlates with. This allows us
to write a noisy system of linear equations with two variables per equation
whose intended solution is the hidden assignment x. Using an approximation
algorithm for such systems (Charikar & Wirth 2004; Goemans & Williamson
1995), we can extract an assignment x′ that correlates with x. We then show
that the correlation between x and x′ can be improved via a self-correction
step, which takes advantage of certain expansion properties of the system of
equations that follow (with high probability) from the randomness of G.3

The first stage in the proof of Theorem 1.3 is based on the observation that
if we start with some assignment x′ that correlates with the input x to f , then
the output bits of f(x) give information about the values of various inputs
xi, for an arbitrary predicate P . We prove this in Section 5. This correlation
amplification procedure works in a more general setting than the one used in
the proof of Theorem 1.2, but yields worse parameters.

For the second stage, we base our algorithm on known approaches for finding
solutions of planted random instances. Alon & Kahale (1997) showed how
to find a planted 3-coloring in a random graph of constant degree. Flaxman
(2003) (see also Krivelevich & Vilenchik (2006); Vilenchik (2007)) gave a similar
algorithm for finding an assignment in a planted random 3SAT formula with
sufficiently large clause-to-variable ratio. The planted 3SAT model can be
viewed as a variant of our model where the predicate P corresponds to one of
the eight predicates z1 ∨ z2 ∨ z3, . . . , z1 ∨ z2 ∨ z3. This algorithm starts from an
almost correct assignment, then unsets a small number of the variables in this
assignment according to some condition (“small support size”), so that with
high probability all (but a constant number of) the remaining set variables are
correct. Then the value of the unset variables can be inferred in polynomial
time. We show that the notion of “small support size” can be generalized to
arbitrary non-constant predicates, and this type of algorithm can be used to
invert f . While we directly follow previous approaches, our proofs in Section 4
include some technical simplifications and follow a more rigorous presentation
style.

3This algorithm was suggested to us by Benny Applebaum. Our initial solution was based
on a spectral partitioning algorithm for random graphs, but we chose to present the suggested
solution owing to its technical simplicity and improved parameters.
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2. Definitions and notation

Let X, Y be random variables over {0, 1}. The correlation between X and Y
is the value

Pr[X = Y ]− Pr[X 6= Y ] = 2(Pr[X = Y ]− 1/2).

The correlation between a predicate P : {0, 1}d → {0, 1} and its ith input
is the correlation between the random variables P (X1, . . . , Xd) and Xi. The
correlation between P and the pair of inputs i, j is the correlation between
the random variables P (X1, . . . , Xd) and Xi ⊕Xj. Here X1, . . . , Xd are chosen
uniformly at random. We say P correlates with its ith input (resp. with the
pair of inputs i, j) if the above correlation is non-zero.

The correlation between a pair of assignments x, y ∈ {0, 1}n is defined as
the correlation between the ith bit of x and y, where i is chosen uniformly at
random from [n].

We say an assignment x ∈ {0, 1}n is ε-balanced if |Pr[xi = 0] − 1/2| ≤ ε.
A Bernoulli random variable X ∼ {0, 1} is ε-biased towards 0 (resp. 1) if
Pr[X = 0] is no less than 1/2 + ε (resp. no more than 1/2− ε).

For two random variablesX, Y over the same finite domain Ω their statistical
distance sd(X, Y ) is the quantity 1

2

∑
ω∈Ω(|X(ω)− Y (ω)|).

The random graph model In our random graph model, the bipartite graph
G in the function fG,P is chosen from the following random graph model G =
{Gn,m,d}: (1) Each graph G in Gn has n left vertices and m = m(n) right
vertices; (2) each right vertex v of G has d neighbors on the left, labeled
by Γ(v, 1), . . . ,Γ(v, d); (3) The neighbors of each right vertex are uniformly
distributed (repetitions allowed) and independent of the neighbors of all other
vertices.

One can also consider variants of the model where repeated neighbors are
not allowed (as in Goldreich’s original proposal (Goldreich 2000a)), or a where
for each d-tuple of inputs the corresponding output is present independently
with probability p = p(n) (as is common in the planted SAT literature). Our
results extend to such variants.

3. Obtaining an Almost Correct Assignment

In this section, we show that when the predicate P correlates with one or two of
its inputs, it is possible (with high probability) to approximately invert fG,P (x),
namely find an assignment x′ that agrees with x on almost all inputs.
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3.1. Predicates Correlating with One Input. When the predicate P
correlates with one of its inputs, then every output bit of fG,P (x) gives an
indication about what the corresponding input bit should be. If we think of
this indication as a vote, and take a majority of all the votes, we set most of
the input bits correctly. The following algorithm and proposition formalize this
idea.

Recall that γ1(P ) denotes the maximum correlation (in absolute value)
between P and one of its inputs. Without loss of generality, we will assume that
this correlation is attained by z1, and that the correlation is positive. (If the
correlation is negative, we can work with function obtained by complementing
each output of fG,P .)

Algorithm Single Variable Correlation:
Input: A predicate P ; a graph G; the value fG,P (x) ∈ {0, 1}m.

1. Let ν = Pr[P (z) = 1]. For every input i, set x′i to 1 if at least a ν fraction
of the values fG,P (x)j where i occurs as the first input in fG,P (x)j evaluate
to 1, and 0 otherwise.

2. Output the assignment x′.

Proposition 3.1. Assume the correlation γ1(P ) is attained between P and
its first input and this correlation is positive. Assume also that ε > 0 and
D > (16/γ2

1) log(4/ε). For every x that is γ1/4d-balanced, with probability
1 − 2−Ω(εn) over the choice of G, on input f(x), the assignment x′ produced
by algorithm Single Variable Correlation agrees with x on a (1− ε) fraction of
inputs.

By the Chernoff bound, all but a 2−Ω(γ21n/d
2) fraction of inputs x ∈ {0, 1}n

are γ1/4d-balanced.
To explain the proof, let us make the unrealistic assumption that x is per-

fectly balanced. When the graph G is random, on average the i-th bit of x will
be represented in dD of the outputs. Out of those, on average it will figure in
the first position in D outputs. From the perspective of each of these outputs,
the other input bits are chosen uniformly at random (because x is balanced),
and we expect each one of them to exhibit some correlation towards the input.
The amount of correlation has to be at least γ1(P ), so if D is sufficiently large,
on average the effect of xi on the outputs where it is involved as a first variable
becomes noticeable and the outputs can be used to predict the value of xi with
good probability.
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To make the argument precise, we must argue that this average-case behav-
ior is representative for most of the input bits. To do so we use an application of
the Chernoff bound which is tailored to our setting and is given in Lemma A.1
in Appendix A. We also need to deal with the unrealistic assumption that x is
perfectly balanced; to do so, we replace it by the weaker assumption that x is
almost balanced, which is satisfied by most x ∈ {0, 1}n.

Proof. Fix an x that is γ1/2d-balanced. Let Ni be the number of constraints
whose first input is in i, and I be the set of those inputs i for which Ni ≥ D/2.
We first show that conditioned on the numbers Ni, with probability at least
1 − 2−Ω(εn), x′i = xi for all but εn/2 of the inputs i ∈ I. We then show that
with the same probability, I has size at least (1− ε/2)n.

Let us fix i ∈ I and upper bound the probability that x′i 6= xi. Every
output that involves i as its first variable is sampled from the distribution
P (xi, z̃2, . . . , z̃d), where z̃2, . . . , z̃d are independent bernoulli random variables
that are γ1/4d-biased. Replacing each z̃k by a uniformly random bit zk ∼ {0, 1}
affects the distribution of P (·) by at most γ1/2d, so by the triangle inequality

|Pr[P (xi, z̃2, . . . , z̃d) = xi]− Pr[P (xi, z2, . . . , zd) = xi]| ≤
γ1

4
.

From the definitions of ν and γ1 we get that

Pr[P (1, z2, . . . , zd) = 1] = ν +
γ1

2
and Pr[P (0, z2, . . . , zd) = 0] = ν − γ1

2

and so it follows that

Pr[P (1, z̃2, . . . , z̃d) = 1] = ν +
γ1

4
and Pr[P (0, z̃2, . . . , z̃d) = 0] = ν − γ1

4
.

By the Chernoff bound, the probability that x′i 6= xi is at most 2−γ
2
1Ni/8 ≤

2−γ
2
1D/16 ≤ ε/4.
Conditioned on the numbers Ni, i ∈ I, the events x′i 6= xi are independent

of one another, because once the first input of every output is revealed, the
other inputs that participate in the prediction of x′i are chosen independently
of one another. Since for each i ∈ I, the probability of the event x′i 6= xi is at
most ε/4, by the Chernoff bound the number of inputs i ∈ I such that x′i 6= xi
is at most ε/2 with probability at least 1− 2−Ω(εn).

By Lemma A.1 in Appendix A, the probability that I has size less than
(1− ε/2)n is at most 2−Ω(εDn). So with probability 1− 2−Ω(εDn), x′i = xi for all
but at most εn/2 inputs inside I and εn/2 inputs outside I. The proposition
follows. �
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3.2. Predicates Correlating with a Pair of Inputs. Let us now assume
that the predicate P correlates with a pair of its inputs. Without loss of gener-
ality, we may assume that P correlates with the first pair of inputs (z1, z2), and
that the correlation is positive (otherwise, we can work with the complement
of P by complementing all the outputs of fG,P (x)):

Pr[P (z) = z1 ⊕ z2] ≥ 1

2
+
γ2

2
.

We can then think of each output f(x)j as giving noisy information about the
value xΓ(j,1) ⊕ xΓ(j,2). If x is balanced, on average a 1/2 + γ2/2 fraction of the
linear equations xΓ(j,1)⊕xΓ(j,2) = f(x)j will be satisfied. If x is almost balanced,
we still expect 1/2 + Ω(γ2) of them to be satisfied. Using an approximation
algorithm of Charikar and Wirth, we can obtain a solution x′ that satisfies
1/2 + Ω(γ2/ log(1/γ2)) fraction of these equations:

Theorem 3.2 (Charikar & Wirth 2004). There is a randomized algorithm CW
that given a system of m linear equations modulo 2 and a parameter δ > 0,
finds an assignment that satisfies at least m/2 + Ω(δm/ log(1/δ)) of the equa-
tions, provided that m/2+δm of the equations can be satisfied simultaneously.
The algorithm runs in expected time polynomial in m/δ.

We will argue that (with high probability over the choice of G) (1) x′ must
correlate with x and (2) This correlation can be amplified significantly by ap-
plying a round of self-correction to this system of equations. Specifically, we
show that with high probability over G, the following algorithm recovers most
of the bits of x:

Algorithm Pairwise Correlation:
Input: A predicate P ; a graph G; the value fG,P (x) ∈ {0, 1}m.

1. Create the following system of equations: For every j ∈ [m],

(3.3) uΓ(j,1) ⊕ uΓ(j,2) = f(x)j

LetH be a directed graph over vertex set [n] withm edges (Γ(j, 1),Γ(j, 2)).

2. Apply algorithm CW on input (3.3) and γ2/8 to obtain an assignment
x′ ∈ {0, 1}n.

3. (Self-correction) For every i1 ∈ [n], calculate the number Qi1 of equations
(i1, i2) = (Γ(j, 1),Γ(j, 2)) where f(x)j = x′i2 . Sort the variables by order
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of increasing Qi, breaking ties arbitrarily. Output the assignments y(k)

and y(k), k ∈ {0, . . . , n} where

y
(k)
i =

{
1, if i is among the k variables with smallest value Qi,

0, otherwise.

and y(k) is the complementary assignment obtained by swapping 0 and 1.

In step 3, it may be helpful to think of the value x′i2⊕ f(x)j in the equation
ui1 ⊕ ui2 = f(x)j as a “vote” that xi1 should take value zero. The quantity
Qi1 tallies the votes for xi1 from all the equations that involve i1 as the first
input. The next step would be to set a threshold t so that all inputs with
Qi > t are set to zero, and the others are set to one. A natural threshold to
use is the median value of Q1, . . . , Qn. While this would be sufficient to prove
correctness, it would require us to make somewhat stronger assumptions about
the balance of x and would introduce technical complications in the analysis.
Instead, we consider every possible threshold, which produces n+ 1 candidate
assignments y(0), . . . , y(n). One additional complication is that the correlation
effects may be negative, in which case Qi1 should be interpreted as a vote for
xi1 = 1 and not xi1 = 0. This suggests that we should also consider the negated

assignments y(k) as possible solutions.
Abusing terminology we use “edge j” to refer to the edge (Γ(j, 1),Γ(j, 2)).

Proposition 3.4. Assume the correlation γ2(P ) is attained between P and
its first pair of inputs and this correlation is positive. Assume also that
γ2(P ) > K(γ1(P ))2/3 and D ≥ K(log(1/γ2)/γ2)2 for a sufficiently large con-

stant K. For every x that is γ
3/2
2 /(12 log(1/γ2)d)-balanced and with proba-

bility 1 − 2−n over the choice of G, on input f(x), at least one of the assign-
ments produced by algorithm Pairwise Correlation agrees with x on all but a
O(
√

log(1/γ2)/(
√
Dγ

3/2
2 )) fraction of inputs.

By the Chernoff bound, all but 2−Ω(γ̃32n/d
2) inputs x ∈ {0, 1}n are properly

balanced, where γ̃2 = γ2/(log(1/γ2))2/3.
We outline the proof of Proposition 3.4. From the randomness of G it

follows that with high probability, x satisfies 1/2 + Ω(γ2) of the equations
(3.3), in which case x′ will satisfy 1/2 + Ω̃(γ2) of the same equations. We will
argue that x and x′ must then have correlation Ω̃(γ2). To see this, notice that
the assignments x and x′ differ in satisfying the equation ui1 ⊕ ui2 = f(x)j
exactly when xi1 ⊕ x′i1 6= xi2 ⊕ x′i2 . If we think of the equation as an edge in
H, then the differences are caused by those edges that cross the cut between
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those inputs that take the same value in x and x′ and those that take different
values. With high probability, the graph H is expanding; so if the cut was
almost balanced, about half of the edges would be crossing it.

Let us now make the unrealistic assumption that x satisfies all the equations.
If the correlation between x and x′ was small, then the cut would be almost
balanced, so x′ could satisfy only about half the equations. Since x′ satisfies
noticeably more than half the equations, it would follow that x and x′ have
noticeable correlation. However we merely know that x satisfies 1/2 + Ω(γ2) of
the equations. It could then possibly happen that although the cut is balanced,
most of the edges in the cut come from equations that are unsatisfied by x, in
which case x′ could end up satisfying substantially more than half the equations.

To show this is not possible, we would like to partition the edges of H
into subgraphs H1 and H0, consisting of those edges induced by the equations
satisfied and unsatisfied by x, respectively. Unfortunately, H1 and H0 may not
be expanding. (For instance, if P (z1, z2, z3) is the predicate that is true if and
only if z1 = z2 = z3, the graph H0 has an almost-balanced cut with no edges
crossing it.) However, if we now partition the vertex set into S0 = {i : xi = 0}
and S1 = {i : xi = 1}, the restrictions of H0 and H1 on each of the cuts
(Sa1 , Sa2) will be random and therefore likely to be expanding. By applying
the analysis to each of these subgraphs, we can still conclude that x and x′

must be correlated.
At this point, it remains to amplify the correlation between x and x′. One

possibility is to apply the generic amplification procedure from Section 5. How-
ever, we can obtain an improved analysis (specifically, a better dependence
D(d)) for the special class of predicates that correlate with two variables. Let
us look at a random equation ui1⊕ui2 = f(x)j. On average, f(x)j is correlated
with xi1 ⊕xi2 and x′i2 is also correlated with xi2 , and since the two “noises” are
independent, we would expect that xi1 should be correlated with f(x)j ⊕ x′i2 .
By large deviation, we could then hope that the average value of f(x)j ⊕ x′i2
over all equations involving xi1 should give significant information about xi1 ,
allowing us to amplify the correlation. Thanks to the expansion of the graphs
involved, we can show that this average behavior is typical for most of the
inputs, allowing us to amplify the correlation between x and x′ significantly.

We now introduce some notation. Partition the edges of H into subgraphs
Hb
a1a2

, a1, a2, b ∈ {0, 1} as follows. For each edge j of H where xΓ(j,1) = a1 and
xΓ(j,2) = a2:

◦ H1
a1a2

contains edge j if xΓ(j,1) ⊕ xΓ(j,2) = f(x)j, and

◦ H0
a1a2

contains edge j if xΓ(j,1) ⊕ xΓ(j,2) 6= f(x)j.
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Every edge from H is present in Hb
a1a2

with some probability pba1a2 . We begin
by showing that with high probability all of the graphs Hb

a1a2
are expanding,

and argue that in such a case x and x′ must be correlated. We first give a
general random graph model H∗ that describes all of the graphs Hb

a1a2
. Let H∗

be a graph on vertex set S∗∪T ∗ (where S∗, T ∗ ⊆ [n]) chosen from the following
distribution. For each of m possible edges, with probability p∗, choose random
vertices i1 ∈ S∗, i2 ∈ T ∗ and add the edge (i1, i2) to H∗. (Otherwise, do
nothing.)

We will say H∗ is η-expanding if for every pair of subsets S ⊆ S∗, T ⊆ T ∗∣∣∣∣|{edges (i1, i2) in H∗ : i1 ∈ S, i2 ∈ T}| −
|S|
|S∗|

|T |
|T ∗|

p∗m

∣∣∣∣ ≤ ηm.

Claim 3.5. With probability 1− 2−2n, H∗ is 2/
√
D-expanding.

Proof. The expected number of edges from S to T is |S|
|S∗|

|T |
|T ∗|p

∗Dn. More-
over, the events that each one of the Dn potential edges satisfies this prop-
erty are independent, so by a Chernoff Bound, for a specific pair (S, T ), the
expression under the probability is at most 2/

√
D with probability at most

2e−4n < 2−3n. The claim follows by taking a union bound over all pairs of sets
(S, T ). �

Claim 3.6. For every x ∈ {0, 1}n with probability 1 − 2−2n, the number of
edges in Hb

a1a2
is within 2

√
Dn of pba1a2m.

This claim follows from the Chernoff bound. Let S0 = {i : xi = 0} and
S1 = {i : xi = 1}. For the following two claims, we introduce a value α ∈ [−1, 1]
that measures the correlation between x and x′ defined as follows: First let
α0, α1 ∈ [−1, 1] be values that satisfy Pr[x′i = a | xi = a] = 1

2
(1+αa), a ∈ {0, 1},

and let α = 1
2
(α0 + α1). The following Claim relates the number of equations

satisfied by x′ to this correlation measure α.

Claim 3.7. Assume Hb
a1a2

is η-expanding and has pba1a2m ± ηm edges for all
a1, a2, b ∈ {0, 1}. Suppose x′ satisfies 1

2
(1 + γ′)m of the equations (3.3). Then

γ′ ≤ 2α2 + 24η.

Proof. Suppose x′ satisfies 1
2
(1 + γ′)m of the equations. Let Z = {i : xi =

x′i}. Notice that x and x′ differ in satisfying the jth equation if and only if
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edge j crosses the cut (Z,Z). By our expansion assumption, for every a1, a2, b
we have∣∣|{edges (i1, i2) in Hb

a1a2
: i1 ∈ Z, i2 ∈ Z}|− 1

2
(1+αa1)· 12(1−αa2)·pba1a2m

∣∣ ≤ ηm.

since the density of Z in Sa1 is 1
2
(1 +αa1), and density of Z in Sa2 is 1

2
(1 +αa2).

It follows that the number of equations satisfied by x′ is at most

1
2
(1 + γ′)m ≤

∑
a1,a2∈{0,1}

(p1
a1a2

m+ ηm)

+ 2
∑

a1,a2∈{0,1}

(
1
2
(1 + αa1) · 1

2
(1− αa2) · p0

a1a2
m+ ηm

)
− 2

∑
a1,a2∈{0,1}

(
1
2
(1 + αa1) · 1

2
(1− αa2) · p1

a1a2
m− ηm

)
.

The first summation accounts for all the equations satisfied by x, while the other
two account for those equations satisfied by x′ but not x and those equations
satisfied by x but not x′ (with xi1 ∈ Sa1 and xi2 ∈ Sa2), respectively. The
conclusion follows after simplifying this expression. �

Claim 3.8. Assume α > 0, αγ2 > γ1, x is αγ2/12d-balanced, and H is η-
expanding. Then there exists some k ∈ [n] so that for all but a O(η/αγ2)

fraction of the inputs i ∈ [n], y
(k)
i = xi.

Let us first show why this claim is true under the following idealized as-
sumptions: (1) x is perfectly balanced and (2) the graphs Hb

a1a2
are perfectly

expanding in the sense that for every i1 ∈ Sa1 and subset of vertices T ⊆ Sa2 , i1
has exactly pba1a2D|T | edges going into T . Then the probability that in a ran-
dom equation j, it happens that xi1⊕x′i2 = f(x)j is exactly Pr[z1⊕z′2 = P (z)],
where z = (z1, . . . , zd) ∈ {0, 1}d is chosen uniformly at random and z′2 is chosen
from the distribution x′i2 conditioned on z2 = xi2 for a random i2 ∈ [n]. It
is easier to work with expectations instead of probabilities, so we consider the
expression

E[(−1)z1+z′2+P (z)] = E[(−1)z1+P (z) E[(−1)z
′
2 | z2]]

where z = (z1, . . . , zd). Taking the Fourier transform, we can write E[(−1)z
′
2 |

z2]] = α(−1)z2 + α′, where |α′| ≤ 1. It follows that

E[(−1)z1+z′2+P (z)] = E[α(−1)z1+z2+P (z) + α′(−1)z1+P (z)] ≥ 2αγ2 − |α′|γ1 ≥ αγ2
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since by assumption γ1 ≤ αγ2. Therefore

E[(−1)z
′
2+P (z) | z1 = 0]− E[(−1)z

′
2+P (z) | z1 = 1] ≥ 2αγ2

which we can rewrite as

(3.9) Pr[z′2 = P (0, z2, . . . , zd)]− Pr[z′2 = P (1, z2, . . . , zd)] ≥ αγ2

and so the cases xi1 = 0 and xi1 = 1 can be distinguished by looking at the
values x′i2 + P (x)j over all edges j = (i1, i2).

In the proof, we will replace each of these idealized assumptions with real-
istic counterparts that hold approximately and argue that the errors incurred
by these approximations are not large.

Proof. We will show that because the graphs Hb
a1a2

are expanding, for most
i1 ∈ [n], the probability that xi1 = f(x)j⊕x′i2 for a random equation j = (i1, i2)
that involves i1 is close to the probability that xi1 = P (xi1 , xi2 , xi3 , . . . , xid)⊕x′i2 ,
where i2, i3, . . . , id are chosen uniformly at random from [n]. Then we will show

that for all such i, y
(k)
i = xi for some k ∈ [n].

Fix the assignment x and an index i1 ∈ [n] with xi1 = a1. We say an
equation ui1 ⊕ ui2 = f(x)j is of type (a2, a

′
2, b) if xi2 = a2, x′i2 = a′i2 , and b = 1

if xi1⊕xi2 = f(x)j, and b = 0 if xi1⊕xi2 6= f(x)j. Let us say i1 is good if for all
types (a2, a

′
2, b), the number of equations of type (a2, a

′
2, b) is within δD (where

δ = αγ2/12) of the quantity

Pr[xi2 = ai2 ∧ x′i2 = a′i2 ∧ P (a1, xi2 , . . . , xid) = xi1 ⊕ xi2 ] ·D if b = 1

Pr[xi2 = ai2 ∧ x′i2 = a′i2 ∧ P (a1, xi2 , . . . , xid) 6= xi1 ⊕ xi2 ] ·D if b = 0.

In these probabilities, i2, . . . , id are chosen uniformly at random from [n]. Let’s
assume that i1 is good. Adding these probabilities over the relevant choices
of a, a′, b, we obtain that the number of equations j that contribute to Qi1 is
within 4δ of pa1D, where

pa1 = Pri2,...,id [x′i2 = P (a1, xi2 , . . . , xid)].

And so for every good vertex i1, we have that |Qi1 − pa1D| ≤ 4δ. Using the
assumption that x is δ/d-balanced, we have that

|pa1 − Prz2,...,zd,z′2 [z
′
2 = P (a1, z2, . . . , zd)]| ≤ δ

where z2, . . . , zd are chosen uniformly at random from {0, 1}, and z′2 ∈ {0, 1}
is a random variable chosen from the conditional distribution Pr[z′2 = a2 | z2 =
a2] = 1

2
(1 +αa2). Using (3.9) and the triangle inequality, we can conclude that

p0 − p1 ≥ αγ2 − 2δ.
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So there must be a difference of at least (αγ2 − 10δ)D > 0 among those Qi1

where xi1 = 0 and those Qi1 where xi1 = 1, as long as i1 is good. It follows that
by choosing k appropriately, the assignment y(k) is correct on all good inputs.
We now show that the number of good inputs is n−O(ηn/δ).

To upper bound the number of inputs i1 that are not good, we will bound
this number for every choice of a2, a

′
2, b and take a union bound. Since all

the cases are analogous, for simplicity let us assume that a1 = 0 and a2 =
a′2 = 0, b = 1. Let B− (resp., B+) be the set of i1 with fewer (resp., more)
than 1

2
(1 + α0)p1

00D − δD/6 neighbors i2 in the graph H1
00. By expansion, the

number of edges (i1, i2) where i1 ∈ B− and xi2 = x′i2 = 0 must be at least
1
2
(1 +α0)p1

00D|B−|− ηDn, so δD|B−|/6 ≤ ηDn, from where |B−| ≤ 6ηn/δ. By
analogous reasoning, we can obtain the same upper bound on the size of the
set B+. Taking a union over all such sets for all choices of a2, a

′
2, b, we conclude

that the number of bad vertices is at most O(ηn/δ). �

Proof of Proposition 3.4. We first argue that with high probability, a
1/2 + γ2/4 fraction of the equations (3.3) are satisfied by x. If x was perfectly
balanced, then for every output of G the values of the inputs are chosen from
the uniform distribution on {0, 1}d, and for every j ∈ [m] we would have

Pr[fj(x) = xΓ(j,1) ⊕ xΓ(j,2)]− Pr[fj(x) 6= xΓ(j,1) ⊕ xΓ(j,2)] = γ2.

When x is merely γ2/2d-balanced, it still holds that

Pr[fj(x) = xΓ(j,1) ⊕ xΓ(j,2)]− Pr[fj(x) 6= xΓ(j,1) ⊕ xΓ(j,2)] ≥ γ2/2.

and so equation j is satisfied by x with probability 1/2 + γ2/4. Since the
equations are independent, by the Chernoff bound, x satisfies at least a 1/2 +
γ2/8 fraction of the equations with probability 1−2−Ω(γ22m) ≥ 1−2−2n. Assume
that x satisfies this many equations. By Theorem 3.2, x′ then satisfies 1/2 +
Ω(γ2/ log(1/γ2)) of the equations.

Now assume that the graphs H and Hb
aa′ are all 2/

√
D-expanding, and each

Hb
aa′ has pbaa′m±2m/

√
D edges. By Claim 3.5 and Claim 3.6, this happens with

probability 1 − O(2−2n). By Claim 3.7, it follows that |α| ≥
√
γ2/ log(1/γ2).

If α is positive, by Claim 3.8, we obtain that for some k, y(k) matches x
O(1/(

√
Dαγ2)) of the inputs i. If α is negative, we apply Claim 3.8 to the

complementary assignment x′ and obtain the conclusion for the assignment
y(k). �
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4. From Almost Correct to Correct

In this section, we show that if we start with an almost correct assignment,
fG,P (x) can be inverted for any nontrivial predicate P , provided that the con-
straint to variable ratio m/n = D is a sufficiently large constant (depending
on d).

Proposition 4.1. Let K be a sufficiently large constant, P be a non-constant
predicate, and r ≥ 1 be a parameter. Suppose η ≤ β2/(Kd6), D ≥ Kd8/β2

and r ≤ βKn/(KdK), and d ≤ βn1/K/K, where β = β(P ). There exists an
algorithm that runs in time D3nO(r) such that for 1−O(n−r) fraction of pairs
(G, x), on input G, P , fG,P (x), and x′ ∈ {0, 1}n that has correlation 1− η with
x, the algorithm outputs an inverse for fG,P (x).

The algorithm has three stages. In the first stage, the objective is to come
up with an assignment that matches x on “core” inputs. Roughly speaking,
the core of G with respect to the assignment x is the set of those inputs that
are typical in the sense that they do not affect too many or too few constraints
of G. The core of a random graph is likely to include most of the inputs. In
the second stage, the algorithm unassigns some of the variables. At the end of
this stage, there are no errors in the assignment, and all the inputs in the core
are assigned (correctly). In the third stage, an assignment for the remaining
variables is found by brute force. (The final assignment may not be x, as there
are likely to be many possible inverses for fG,P (x).)

4.1. Support and Core. For x ∈ {0, 1}n we write xi for the string obtained
by flipping the ith bit of x.

Definition 4.2. For i ∈ [n], j ∈ [m], we say that the ith input supports
the jth constraint with respect to an assignment x ∈ {0, 1}n and graph G if
fG,P (xi)j 6= fG,P (x)j.

We illustrate one role that the notion of support plays in the first stage of
the algorithm. With high probability over the choice of planted assignment x
and graph G, we expect most inputs of x to support a relatively large number
of constraints. Suppose we are given an assignment y that is highly correlated
but not identical to the planted assignment x. Since y is close to x, we expect
most input bits of y to satisfy all the constraints they are involved in. So if an
input i of y violates a noticeable number of constraints, we can view this as an
indication that xi 6= yi and flip its value with the hope of moving closer to x.
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We would now like to argue that this procedure will affect all but a few
exceptional inputs i where xi and yi differ. Suppose yi 6= xi, but yi satisfies
almost all the constraints it is involved in. If the ith input supports a noticeable
number of constraints with respect to x, then there will also be a noticeable
number of constraints that are satisfied by y but also supported by the ith input
in x. Consider the input bits that participate in such a constraint. It cannot be
the case that xi and yi differ only on the ith input bit, for otherwise we would
get that fG,P (xi)j = fG,P (x)j (as both x and y satisfy the jth constraint).
So there must be at least another input i′ that participates in this constraint
such that xi′ 6= yi′ . If this scenario happens too often (i.e., for too many
values of i), using an expansion-like property of G we obtain a large set of
inputs where x and y disagree, contradicting the assumption that x and y are
highly correlated. By choosing parameters appropriately, it turns out that the
number of disagreements between x and y drops by a factor of two, so after
log n iterations all the disagreements vanish.

One implicit assumption we made in this argument is that the ith input
participates in sufficiently many constraints. With high probability, this will
be true for a random i, but we also expect to encounter some exceptions.
Since these inputs are “atypical”, we would like to discard them and deal with
them separately later. Discarding a few atypical inputs (and the constraints
they are involved in) may create more atypical ones. After discarding those
and repeating sufficiently many times, we arrive at a set where every input is
typical. We call this set the “core” of G.

Definition and properties of core Before we start the iteration process
that arrives at the core, it will be convenient to discard some additional atypical
inputs, such as those that support too few constraints. As we will use the con-
struction several times with different parameters, we give a generic definition,
which allows us to derive a core starting from any subset of the inputs.

Definition 4.3. Let S be a subset of [n]. We say that a set H is an (S, λ, k)-
core of G (λ ≥ 0, k ≥ 1) if it can be obtained by the following iterative process:

(i) H0 = A∩S, where A is the set of inputs that appear in at least (d−λ)D
and at most (d+ λ)D constraints of G.

(ii) If there exists an input vt ∈ Ht which appears in fewer than (d − kλ)D
constraints that contain only inputs from Ht, set Ht+1 = Ht \ {vt},

(iii) If no such inputs exist at stage t, set H = Ht.
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The construction of the core is nondeterministic: In step 2, there may be
several available choices for inputs to be eliminated, and different choices of
inputs may lead to different sets H.

For the definition of A in step 1, notice that on average, every input appears
in dD constraints. Therefore, A captures those inputs whose appearance does
not deviate much from their average. The following facts are easy consequences
of the definition:

Fact 4.4. Let H be a (S, λ, k)-core of G. If i is in H, then i appears in at
most (k + 1)λD constraints containing some input outside H.

Proof. Because i is in A, it appears in at most (d + λ)D constraints. Be-
cause i survives the core elimination process, it appears in at least (d− kλ)D
constraints containing only inputs from H. So i can appear in at most (k+1)λD
constraints containing some input outside the core. �

Fact 4.5. If S ⊆ S ′, then every (S, λ, k)-core of G is contained in every
(S ′, λ, k + 2)-core of G.

Proof. Let H and H ′ denote an (S, λ, k)-core of G and an (S, λ, k+ 2)-core
of G, respectively. For contradiction, suppose that there exists some input i in
H but not in H ′. Consider the earliest stage t in the construction of H ′ where
some i ∈ H is eliminated from H ′. Then t > 0 because initially H ′ contains
all of H. But if i was eliminated at stage t > 0, then it appears in more than
(k + 1)λD constraints containing inputs i′ that were eliminated at an earlier
stage. Since all these inputs i′ come from outside H, it follows that i appears in
more than (k+ 1)λD constraints with some input outside H. This contradicts
Fact 4.4. �

We now show that if a graph has a certain expansion-like property, then
its core must be large. Using some standard probabilistic calculations, it will
follow that a random graph is likely to have large core. We say G is (α, α′, γ)-
sparse if there do not exist sets V, V ′ of variables and C of constraints such that
|V | = αn, |V ′| = α′n, |C| = γDn, and every constraint in C contains a pair of
inputs i 6= i′ with i ∈ V and i′ ∈ V ′. When α = α′, we say G is (α, γ)-sparse.

Proposition 4.6. Assume that |A|, |S| ≥ 1− ε and G is (3ε, 2(k−1)ελ
d(d−1)

)-sparse.

Then every (S, λ, k)-core of G has size at least (1− 3ε)n.
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Proof. We show that under the assumptions, the construction of the core
can go through at most εn iterations. Since initially, A ∩ S has size (1− 2ε)n
and one vertex is eliminated at every step, it follows that the core has size at
least (1− 3ε)n. We prove this by contradiction: If more than εn iterations are
performed, G cannot be sparse.

Let t > 0. The input vt (which was eliminated at stage t) appears in at
least (d− λ)D constraints. However, since vt was eliminated at stage t, it can
appear in at most (d−kλ)D constraints containing only inputs from inside Ht.
Let T ≥ t be any stage before the process terminates. It follows that vt 6∈ HT

must participate in at least (k − 1)λD constraints that contain some (other)
input from outside Ht, and therefore also outside HT . Letting t range from 1 to
T , it follows that there are at least (k−1)λDT pairs of inputs from outside HT

that appear in the same constraint. Each constraint can account for at most(
d
2

)
such pairs, so there are at least (k − 1)λDT/

(
d
2

)
constraints that contain a

pair of variables from outside HT .
Now suppose for contradiction that the process takes more than εn steps.

At stage T = εn, we have n − |HT | ≤ 3εn, but there are (k − 1)λDεn/
(
d
2

)
constraints that contain a pair of variables from outside HT , contradicting of
our assumption that G is (3ε, 2(k−1)ελ

d(d−1)
)-sparse. �

The core of a random graph We would now like to exclude those in-
puts that support too few constraints from the core. Let ρ = β(P )/28. In
Proposition 4.8, we show that on average the ith input supports at least 32ρD
constraints with respect to x. Let A be the set of inputs that appear in no
fewer than (d− ρ)D and no more than (d+ ρ)D constraints. Let B be the set
of inputs that support at least 30ρD constraints with respect to x. We will use
H(G, x) to denote an arbitrary (B, ρ, 3)-core of G.

By Proposition 4.6, to prove that H(G, x) contains most of the inputs, it
is sufficient to show that A and B are large and G is sparse. We begin by
proving that a random G is likely to be sparse. We prove a slightly more
general statement for later use.

Proposition 4.7. Assume α ≤ α′ and D ≥ 4α′/γ. Then G is not (α, α′, γ)-
sparse with probability at most (21d4α2α′/γ2)γDn/2.

Proof. The probability that a specific constraint contains an input from V
and an input from V ′ is at most d2αα′ by a union bound. To upper bound the
probability that G is not (α, α′, γ)-sparse, we take a union bound over all triples
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V, V ′, U of size αn, α′n, and γDn, respectively to obtain an upper bound of(
n

αn

)(
n

α′n

)(
Dn

γDn

)
· (d2αα′)γDn

≤
( e
α′

)2α′n( e
γ

)γDn
(d2αα′)γDn

=
( e
α′

)2α′n(ed2αα′

γ

)γDn
=
(e2d2α

γ

)γDn(α′
e

)(γD−2α′)n

≤
(e2d2α

γ

)γDn
·
(α′
e

)γDn/2
=
(e3d4α2α′

γ2

)γDn/2
on the probability that G is not (α, α′, γ)-sparse. �

We now prove that H(G, x) is likely to be large. Our statement will be a
bit more general as required for later application.

Proposition 4.8. For every pair of constants a > 0, k > 1 there exists a
constant K such that the following holds. Assume that x is β(P )/4d-balanced.
With probability 1 − 2−Ω((ερ/d) min{ρ,1/d}Dn) over the choice of G, every (B ∩
J, aρ, k)-core of G has size at least (1 − 3ε)n, where J ⊆ [n] is any set of size
at least (1− ε/2)n, ε ≤ ρ2/Kd8, n,D ≥ Kd2/ρ.

Proof. By Proposition 4.6, the probability that H(G, x) has size less than
1− 3ε is at most the sum of the probabilities of the following three events: (1)
|A| < (1 − ε)n, (2) |B| < (1 − ε/2)n, and (3) G is not (3ε,Ω(ρε/d2))-sparse.
We now upper bound these probabilities.

We first upper bound the probabilities that |A| < (1 − ε)n and |B| <
(1−ε/2)n. To bound Pr[|A| < (1−ε)n], we apply Lemma A.1 on the following
bipartite graph: Vertices on the left come from [n], vertices on the right come
from [Dn] × [d], and i ∈ [n] is connected to (j, k) ∈ [Dn] × [d] whenever
Γ(j, k) = i (namely, the ith input appears in position k in the jth constraint).
By Lemma A.1, at most εn/2 of the vertices on the left have fewer than (1 −
aρ/d)dD or more than (1 + aρ/d)dD neighbors on the right with probability
1− 2−Ω((ρ2ε/d)·Dn).

We now bound Pr[|B| < (1− ε/2)n]. First, we lower bound the probability
that the jth constraint is supported by at least one of its inputs. Let z =
(xΓ(j,1), . . . , xΓ(j,d)). With probability 1 − d2/2n ≥ 1/2, the inputs Γ(j, k) are
pairwise distinct for 1 ≤ k ≤ d. Conditional on all inputs being pairwise
distinct, each of the bits z1, . . . , zd is independent and at most β/4d + d/n-
biased. By assumption, β/4d + d/n ≤ β/2d. Then the statistical distance
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between the distribution on z and the uniform distribution is at most β/2.
Under the uniform distribution, the boundary of P has probability β, so under
the distribution on z it has probability at least β/2. Since the condition that
Γ(j, k) are pairwise distinct holds with probability 1/2 or more, it follows that
the jth constraint is supported by one of its inputs with probability at least
β/4 = 64ρ.

Since the constraints are chosen independently, by a Chernoff bound with
probability 1− 2−Ω(ρDn), at least 32ρDn constraints are supported by at least
one of their inputs. Consider one of these constraints. Conditional on the con-
straint being supported by one of its inputs, the first supporting input is dis-
tributed uniformly at random among all possible inputs. We can therefore ap-
ply Lemma A.1, which tells us that the probability of having more than (ε/2)n
constraints that support fewer than 30ρD inputs is at most 1− 2−Ω(ρ2εDn).

By Proposition 4.7, the probability that G is not (3ε,Ω(ρε/d2))-sparse is at
most 2−Ω((ρε/d2)Dn). Adding all the failure probabilities, we obtain the desired
bound. �

4.2. The Algorithm. To describe the algorithm, we need to introduce a
bit more notation. Let V ⊆ [n] be a collection of inputs and C ⊆ [n]d be a
collection of constraints. Let GV,C be the bipartite graph with vertex set (V,C)
and where an edge (i, j) is present whenever input i participates in constraint j.
Recall that r is a parameter that controls the tradeoff between the running time
and the success probability of the algorithm, and ρ = Ω(β(P )), the boundary
of P .

Algorithm Complete:
Input: A predicate P , a graph G, the value fG,P (x), an assignment x′ ∈ {0, 1}n
(that correlates with x):

1. Set π0 = x. For k = 1 to log n do the following: For each input i, if i
appears in 5ρD outputs unsatisfied by πk−1, set πk(i) = ¬πk−1(i). For
others set πk(i) = πk−1(i). Create all assignments y that differ from πlogn

in at most r inputs.

2. For each assignment y produced in Stage 1, let By be the set of those
inputs that support at least 26ρD constraints with respect to y. Compute
any (By, ρ, 5)-core Hy of G. For every subset I ⊆ Hy of size r and every
possible partial assignment a ∈ {0, 1}I , create the following assignment
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z ∈ {0, 1,⊥}n:

zi =


yi, if i ∈ Hy − I
ai, if i ∈ I
⊥, otherwise.

3. For each assignment z produced in Stage 2, let Z be the subset of in-
puts i such that zi = ⊥, and W be the subset of constraints in G that
contain at least one input from Z. If all connected components of GZ,W

contain at most r log n inputs, exhaustively search for an assignment for
the unassigned inputs that satisfy all the constraints in that component,
and replace the unassigned components of z by this assignment.

4. If any of the assignments produced at this stage maps to fG,P (x) under
f , output this assignment. Otherwise, fail.

We analyze the running time of Algorithm Complete. Stage 1 consists of
log n iterations each taking time O(Dn) after which a collection of at most
r
(
n
r

)
assignments are produced. For each output of Stage 1, Stage 2 consists

of a core computation (which could take time O(Dn2)), for which another set
of r

(
n
r

)
assignments is produced. In Stage 3 we perform an exhaustive search

of assignments over at most Dn components of size r log n each, which can
be done in time nr+1. Stage 4 applies a computation of f on every candidate
assignment that survives Step 3. It follows that the running time is D3nO(r).

4.3. The First Stage.

Proposition 4.9. Assume G is (α, α′, ρα′/d2)-sparse for all α ≤ α′, η and
α′ ≥ r/n. Assume also that x and x′ agree on at least a (1 − η)-fraction of
inputs. Then for at least one of the assignments y obtained in Stage 1, x and
y agree on all inputs in every core H(G, x).

The proof relies on the following claim:

Claim 4.10. Under the assumptions of Proposition 4.9, let Bk be the subset
of H(G, x) on which πk and x disagree. Then |Bk| < max{|Bk−1|/2, r} for
every k > 0.

Proof of Proposition 4.9. As k takes value at most log n, by Claim 4.10,
|Blogn| ≤ r. That is, πlogn and x take the same value on all but at most r inputs
in H(G, x). Thus trying all assignments of all possible subsets of size r, at least
one y will match x everywhere on H(G, x). �
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Proof of Claim 4.10. Let H = H(G, x). We will show that every input
in Bk has at least ρD constraints that contain another input from Bk−1. We
will then conclude that Bk cannot be too large because G is sparse.

Assume that i ∈ Bk for some k > 0. We have two cases:

Case i ∈ Bk−1: Then πk−1(i) = πk(i), so the assignment to input i was not
flipped at stage k. Therefore i appears in at most 5ρD constraints unsatisfied
by πk−1. Since i is in H, i supports at least 30ρD constraints with respect to
x. So i supports at least 25ρD constraints (with respect to x) that are also
satisfied by πk−1. Since πk(i) 6= xi, each such constraint must contain some
other input i′ such that πk−1(i′) 6= xi′ . Furthermore, by Fact 4.4, i appears in
at most 4ρD constraints that contain some input not from H. So at least 21ρD
of the constraints that i appears in contain some other input from Bk−1.

Case i 6∈ Bk−1: Since i ∈ Bk, input i must participate in at least 5ρD con-
straints unsatisfied by πk−1. Since those constraints are satisfied by x, each of
them must contain an input on which x and πk−1 disagree. Furthermore, by
Fact 4.4, i appears in at most 4ρD constraints with inputs not from H, so at
least ρD of those constraints have some input from Bk−1.

In either situation, every input in Bk must appear in at least ρD constraints
that contain some other input from Bk−1. This gives ρD|Bk| pairs of inputs
from Bk−1×Bk that participate together in a constraint. So at least ρD|Bk|/

(
d
2

)
constraints contain a pair of inputs from Bk−1 ∪Bk.

We now prove the claim. Assume for contradiction that |Bk| ≥ r and |Bk| ≥
|Bk−1|/2 for some k > 0. Consider the smallest such k. Then |Bk−1| ≤ ηn.
We consider two cases. If |Bk| ≥ |Bk−1| we contradict the assumption that G
is sparse with α = |Bk−1|/n and α′ = |Bk|/n. If |Bk−1|/2 ≤ |Bk| < |Bk−1|,
we contradict the assumption that G is sparse with α = |Bk−1|/n and α′ =
2|Bk|/n. �

4.4. The Second Stage.

Proposition 4.11. Assume that G is (3α, 44ρα/d2)-sparse for all r/n ≤ α ≤
3ε, x and y agree on all inputs in H(G, x), and |H(G, x)| ≤ 3εn. Then for at
least one of the assignments z contained at the end of Stage 2, all inputs in
H(G, x) are assigned a {0, 1} value in z and for every i ∈ [n], either zi = xi or
zi = ⊥.

Proof. All inputs in H are assigned: By Fact 4.4, every i ∈ H appears in
at most 4ρD constraints containing an input outside H. Therefore, i supports
at least 26ρD constraints with respect to x where all inputs are from H. Since
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x and y match on all inputs appearing in these constraints, i supports at least
26ρD constraints with respect to y, so i ∈ By. In particular, A ∩B ⊆ A ∩By.
By Fact 4.5, H ⊆ Hy.
All assigned inputs are assigned correctly: Let F be the set of inputs i ∈ Hy

such that xi 6= yi. We will show that |F | ≤ r. It follows that at least one of
the assignments z has all its assigned inputs assigned as in x.

Let i be an input in F . By assumption, i is not in H. Since i is in Hy, it
supports at least 26ρD constraints with respect to y. By Fact 4.4, i supports
at least 20ρD constraints with respect to y containing only inputs from Hy.
Consider any such constraint. This constraint must contain another input i′

such that xi′ 6= yi′ . Then i′ is not in H either, so i′ is also in F . Summing up,
we obtain at least 20ρD|F | pairs of inputs in F that appear together in some
constraint. So there are at least 20ρD|F |/

(
d
2

)
constraints that contain pairs of

variables from F . Since F does not intersect H, it has size at most 3εn. Since
G is sparse, this is only possible if |F | ≤ r. �

4.5. The Third Stage. The correctness of the third stage will follow from
the next proposition. This proposition is analogous to Lemma 5 in Flaxman
(2003) and Proposition 6 in Krivelevich & Vilenchik (2006), but our proof is
somewhat simpler.

Proposition 4.12. Assume D ≥ d7/ρ2 and Kr(d/ρ)K ≤ n for a sufficiently
large constant K. Let H denote the set of all inputs that do not appear in
H(G, x) and W denote the set of all constraints that contain at least one input
from H. Then with probability at most 4 · 2−r (over the choice of G and x),
every connected component of GH,W has fewer than r inputs.

To prove Proposition 4.12, we want to upper bound the probability that
GH,W contains a connected component with r or more vertices. If this is the
case, then this component must contain a subset that is “minimal” in the
following sense:

Definition 4.13. Let V ⊆ [n] be a collection of inputs and C ⊆ [n]d be a
collection of distinct constraints. We say that C is a minimal connected cover
of V if GV,C is connected, but GV,C′ is not connected for every C ′ that is a
strict subset of C.

If GH,W contains a connected component with s or more inputs, then there

exist subsets V ⊆ H and C ⊆ W such that r ≤ |V | < r+d and C is a minimal
connected cover of V . To obtain such a pair (V,C), we first remove enough
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arbitrary constraints from W so that the number of inputs from H that remain
in them is between r and r + d. This is always possible as every constraint in
W contains between 1 and d inputs from H. We let V be the set of remaining
inputs from H that are present in the remaining constraints. We then possibly
eliminate some additional constraints to obtain a minimal connected cover C
of V .

Therefore the probability that GH,W contains a connected component with
log n or more vertices is upper bounded by the probability that there exists a
pair (V,C) such that: (1) r ≤ |V | < r + d, (2) C is a minimal connected cover
of V , (3) V is contained in H, and (4) all constraints of C are present in G.

To prove Proposition 4.12, we first upper bound the probability (over the
choice of G and x) that conditions (3) and (4) are satisfied for a particular pair
(V,C). We then take a union bound over all pairs (V,C) that satisfy conditions
(1) and (2). Let |V | = v and |C| = c.

Facts about connected covers: We prove three useful facts about con-
nected covers.

Fact 4.14. Let C be a connected cover of V . The number of inputs that are
not in V but participate in some constraint of C is at most dc− (v + c) + 1.

Proof. There are at most dc pairs (i, j) such that input i ∈ [n] participates
in constraint j ∈ C. Since GV,C is connected, it must contain at least v+ c− 1
edges. Each such edge gives a pair (i, j) with i ∈ V and j ∈ C. So there can
be at most dc− (v + c) + 1 pairs (i, j) with i 6∈ V and j ∈ C. �

Fact 4.15. Let C be a minimal connected cover of V . Then |C| < |V |.

Proof. Since C is a connected cover of V , the graph GV,C is connected. Let
T be a spanning tree of GV,C . The vertices of T come from V ∪ C. Since T is
a tree, it has more leaves than internal vertices. Suppose that |C| ≥ |V |. Then
T must contain at least one leaf c coming from C. Since c is a leaf, removing c
from C does not disconnect T , and so C − {c} is also a connected cover of V .
Therefore C is not minimal. �

Fact 4.16. Let C be a minimal connected cover of V . The number of inputs
in V that participate in 2d or more constraints of C is at most v/2.
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Proof. There are at most dc edges in GV,C , By Fact 4.15, v ≥ c, so the
average degree of a vertex in V is at most d. By Markov’s inequality, at most
half the vertices have degree 2d or more. �

Bounding the probability for a specific pair (V,C): We fix a pair (V,C).
Let R denote the (random) collection of all constraints that appear in G. Then
for any x, the probability that G chosen from the distribution Gn,m,d satisfies
conditions (3) and (4) is:

(4.17) Pr
G∼Gn,m,d

[C ⊆ R and V ⊆ H]

= Pr
G∼Gn,m,d

[C ⊆ R and V ∩H(G, x) = ∅]

= Pr
G∼Gn,m,d

[C ⊆ R] Pr
G∼Gn,m,d

[V ∩H(G, x) = ∅ | C ⊆ R]

= Pr
G∼Gn,m,d

[C ⊆ R] Pr
G∼Gn,m−c,d

[V ∩H(G ∪ C, x) = ∅]

≤
(
m

c

)(
c

nd

)c
· Pr
G∼Gn,m−c,d

[V ∩H(G ∪ C, x) = ∅].

Here, G∪C denotes the constraint graph obtained by adjoining the constraints
of C to those of G. To obtain the third equality, we observe that a uniformly
random multiset of m constraints conditional on containing C can be obtained
by choosing a multiset of m − c constraints uniformly at random and taking
the union with C. In the rest of this section, we will implicitly assume that G
is chosen from the distribution Gn,m−c,d. The last inequality follows by taking
a union bound over all possible sets of c outputs where the constraints in C
could occur.

Let J ⊆ [n] be the set of inputs that appear in fewer than 2d constraints of
C.

Fact 4.18. Suppose D ≥ 2d/λ. Every (S ∩ J, λ, 2)-core of G is contained in
every (S, 2λ, 3) core of G ∪ C.

Proof. This proof is analogous to the proof of Fact 4.5. Let H and H ′

denote an (S ∩ J, λ, 2)-core of G and an (S, 2λ, 3) core of G ∪ C, respectively.
For contradiction, suppose that there exists some input i in H but not in H ′.
Consider the earliest stage t in the construction of H ′ where some i ∈ H is
eliminated from H ′.

We first argue that t > 0. For this it is sufficient to show that AG,λ ∩ J ⊆
AG∪C,2λ, where AG,λ is the set of inputs in G whose degrees are between (d−λ)D
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and (d+λ)D. For any input v ∈ AG,λ∩J , its degree in G∪C is at least (d−λ)D
and at most (d+ λ)D + 2d ≤ (d+ 2λ)D, so it belongs to AG∪C,2λ.

Now suppose i ∈ H was eliminated from H ′ at stage t > 0. Then it appears
in at least 4λD constraints of G∪C containing inputs i′ that were eliminated at
an earlier stage. Since all these inputs i′ come from outside H, it follows that i
appears in more than 4λD constraints of G∪C. Because i is in H and therefore
in J , it can participate in at most 2d ≤ λD constraints of C. Therefore there
are at least 3λD constraints of G that contain i and another input from H.
This contradicts Fact 4.4. �

We now define H ′(G, x) to be a random (B ∩ J, ρ/2, 2)-core of G. By
“random core” we mean that the selection of vt in step 2 of the definition of
core will be performed uniformly at random among all possible choices. We
now upper bound the right side of inequality (4.17) for a random x ∼ {0, 1}n
as follows:

Pr
G,x

[V ∩H(G ∪ C, x) = ∅] ≤ Pr
G,x,H′

[(J ∩ V ) ∩H ′(G, x) = ∅] (by Fact 4.18)

≤ Pr
G,x,H′

[(J ∩ V ) ∩H ′(G, x) = ∅ | |H ′| > (1− 3ε)n](4.19)

+ EH′ Pr
G,x

[|H ′(G, x)| ≤ (1− 3ε)n].(4.20)

Let ε = 1/(KdD) ≤ ρ2/(Kd8). We now upper bound these two prob-
abilities. By Proposition 4.8, probability (4.20) is at most 2−Ω(poly(ρ/d)Dn).
Probability (4.19) can be bounded using the following simple but important
observation:

Fact 4.21. Conditioned on |H ′| = h, the set H ′(G, x) is uniformly distributed
among all sets of size h in [n]− J .

Proof. Let Z, Z ′ be any two sets of size h in [n]−J . We show a probability-
preserving bijection between the triples (G, x,H ′) such that H ′(G, x) = Z and
those triples such that H ′(G, x) = Z ′. Let π be any permutation on [n] that
is invariant of J and maps Z to Z ′. Then π induces a map between triples
(G, x,H ′) by acting on the indices of x, the inputs of G, and the elements of B
and the inputs vt in the definition of H ′, respectively. Clearly π is probability
preserving and if H ′(G, x) = Z, then π(H ′)(π(G), π(x)) = Z ′. It follows that
Z ′ is at least as probable an outcome for H ′(G, x) as Z. By symmetry, they
must have the same probability. �
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Using Fact 4.21, we can bound expression (4.19) by

Pr
G,x

[(J ∩ V ) ∩H ′(G, x) = ∅ | |H ′(G, x)| = h] ≤ (1− h/n)|J∩V | ≤ (1− h/n)|V |/2

where the last inequality uses Fact 4.16, and so

Pr
G,x

[(J ∩ V ) ∩H(G, x) = ∅] ≤ 2−Ω(poly(ρ/d)Dn) + (3ε)v ≤ 2(3ε)v,

because ε = 1/(KdD), v ≤ r + d, and Kr(d/ρ)K ≤ n.

The union bound: We now upper bound the probability that conditions
(1)-(4) are satisfied by taking a union bound over all pairs (V,C) that satisfy
conditions (1) and (2). To do so, we need an upper bound on the number
of minimal connected covers C of V . We count as follows: First, each input
in V can be assigned to one of c constraints in one of d positions in this
constraint, giving (cd)v possible choices. By Fact 4.14 C contains at most
dc−(v+c)+1 additional inputs coming from outside V . These can be assigned
in (n − |V |)dc−(v+c)+1 ≤ ndc−(v+c)+1 possible ways. So the number of minimal
connected covers of V is at most (cd)vndc−(v+c)+1. We now take the desired
union bound:

r+d−1∑
v=r

v−1∑
c=1

(
n

v

)
︸︷︷︸

choice of V

· (cd)v · ndc−(v+c)+1︸ ︷︷ ︸
choice of C

·
(
m

c

)(
c

nd

)c
· 2(3ε)v

≤
∑
v,c

(en
v

)v
· (vd)v · ndc−(v+c)+1 ·

(eDn
c

)c( c
nd

)c
· 2(3ε)v

=
∑
v,c

(ed)v(eD)c · 2(3ε)v ≤
r+d−1∑
v=r

(e2dD)v · 2(3ε)v ≤ 4 · 2−r.

The last inequality holds because ε = 1/(KdD) for a sufficiently large constant
K.

4.6. Proof of Proposition 4.1. To prove Proposition 4.1, we upper bound
the failure probability of each of the three stages in Algorithm Complete. Let
H(G, x) be an arbitrary (2ρ, 3) core of G. By Proposition 4.9, at the end of
stage 1, x and some y agree on H(G, x) unless G is not (α, α′, ρα′/d2)-sparse
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for some α ≤ η and α′ ≥ max{α, r/n}. By Proposition 4.7, this happens with
probability at most

ηn∑
a=1

n∑
a′=max{a,r}

(21d6a2

ρ2a′n

)ρa′D/2d2
≤

r∑
a=1

n∑
a′=r

(21d6a

ρ2n

)ρa′D/2d2
+

ηn∑
a=r+1

n∑
a′=a

(21d6a

ρ2n

)ρa′D/2d2
≤

r∑
a=1

2
(21d6a

ρ2n

)ρrD/2d2
+ 2

ηn∑
a=r+1

(21d6a

ρ2n

)ρaD/2d2
≤ 2r

(21d6r

ρ2n

)ρrD/2d2
+ 2ηn

(21d6η

ρ2

)ρηnD/2d2
≤ n−r.

Let ε = ρ2/(Kd8). Assuming x and y agree on H(G, x), by Proposition 4.11,
at the end of stage 2, all inputs in H(G, x) are assigned a {0, 1} value in z and
for every i ∈ [n], either zi = xi or zi = ⊥, unless |H(G, x)| ≤ 3εn or G is not
(α, 44ρα/d2)-sparse for some r/n ≤ α ≤ 3ε. By Proposition 4.8 the first event
happens with probability at most 2−poly(ρ/d)Dn. By Proposition 4.7, the second
event happens with probability at most

3εn∑
a=r

( d8a

90ρ2n

)22ρaD/d2

≤ 3εnmax
{( d8r

90ρ2n

)22ρrD/d2

,
( d8ε

30ρ2

)66ρεDn/d2}
≤ n−r.

Let Z be the set of inputs i such that zi = ⊥ and W be the set of constraints
that contain at least one input from Z. Let W ′ be the set of constraints
that contain at least one input from H. Assuming Z ⊆ H, the connected
components of GZ,W are contained in the connected components of GH,W ′ . By
Proposition 4.12, GH,W ′ has a component with r log n or more inputs with
probability at most 4n−r. In such a case, Algorithm Complete outputs the
desired assignment.

5. Amplifying Assignments

In this section we give the proof of Theorem 1.3. We may assume that the
predicate P is not constant, for otherwise the function is trivially invertible.
Theorem 1.3 is proved in two stages. First, in Proposition 5.1 we show that
given an assignment x′ that has correlation ε with x, it is possible to obtain
an assignment w that agrees with x on most of the inputs. We then apply
Proposition 4.1 with w as advice to complete the inversion.

Proposition 5.1. Let K be a sufficiently large constant, P be any predicate
and D > 2Kd/ε2d−2. There is an algorithm Amplify with running time polyno-
mial in n, 1/ε, and 2d with the following property. With probability 1− 2−Kd
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over the choice of G, for a 1 − 2−Ω(ε2n) fraction of assignments x and every
assignment x′ that has correlation ε with x, on input fG,P , fG,P (x) and x′,
algorithm Amplify outputs assignments z1, . . . , zpoly(n) so that at least one of
them agrees with x on a 1− 2−Kd fraction of inputs.

Theorem 1.3 follows by combining Proposition 5.1 and Proposition 4.1. We
turn to proving Proposition 5.1, namely we describe and analyze Algorithm
Amplify.

Algorithm Amplify takes advantage of the assignment x′ to get empirical ev-
idence about the values of each input value xi in the hidden assignment. With-
out loss of generality, let us assume that P (z) depends on its first variable z1.
Then the distributions Dperfect

0 and Dperfect
1 given by (z2, . . . , zd, P (0, z2, . . . , zd))

and (z2, . . . , zd, P (1, z2, . . . , zd)) (where z2, . . . , zd are uniformly random bits)
will be statistically distinguishable with advantage at least 2−(d−1). Let us
now assume that x is perfectly balanced. Now consider an output f(x)j where
i is the first variable with xi = b and consider the distribution Db given by
(x′Γ(j,2), . . . , x

′
Γ(j,d), P (b, xΓ(j,2), . . . , xΓ(j,d))). By the randomness of G, we can

view Db as a noisy variant of Dperfect
b , where the noise in each of the first d− 1

components is independently chosen from the conditional distribution of x′i′
given xi′ for random i′. We will argue that if Dperfect

0 and Dperfect
1 are distin-

guishable, so are D0 and D1. By looking at all the neighbors j of input i and
their values (x′Γ(j,2), . . . , x

′
Γ(j,d), f(x)j), we collect empirical evidence whether

they were drawn from D0 or from D1, allowing us to guess the value of xi with
high confidence.

Let us fix a pair of assignments x and x′ with correlation ε. We consider
the probability distributions D0 and D1 described as follows:

Db : Choose i2, . . . , id ∼ [n] and output (x′i2 , . . . , x
′
id
, P (b, xi2 , . . . , xid)).

In Claim 5.2 we will prove that the distributions D0 and D1 have noticeable
statistical distance. We will also argue shortly that the two distributions are
efficiently distinguishable given log n bits of advice (that depends on x). So by
obtaining enough samples from the distribution Dxi , we can distinguish with
high probability between the cases xi = 0 and xi = 1, and recover the value of
the input xi.

We now describe algorithm Amplify. The algorithm will need to compute
the distributions D0 and D1. Since the algorithm does not have access to x, we
describe these two distributions in an alternative way. Let F be the following
distribution over {0, 1}2: First, choose i ∈ [n] at random, then output the pair
(xi, x

′
i). Then F can be described using O(log n) bits, since each value of F
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occurs with a probability that is a multiple of 1/n. Let (a, a′) denote a pair
sampled from F . The distribution Db can then be described as follows:

1. Uniformly and independently sample pairs (aj, a
′
j) ∼ F for j = 2, . . . , d.

2. Output (a′2, . . . , a
′
d, P (b, a2, . . . , ad)).

Algorithm Amplify:
Inputs: A predicate P , a graph G, the value y = fG,P (x), ε > 0, an assignment
x′ ∈ {0, 1}n that ε-correlates with x.

For every distribution F on {0, 1}2, where all probabilites are multiples of 1/n,
compute and output the following assignment zF :

1. Compute the distributions D0 and D1.

2. For every i ∈ [n], compute the empirical distribution D̂i which consists
of all samples of the form (x′i2 , . . . , x

′
id
, yj) for every constraint j of fG,P

such that Γ(j, 1) = i and Γ(j, k) = ik for 2 ≤ k ≤ d.

3. Set zF ,i = b if D̂i is closer to Db than to D1−b in statistical distance.

It is easy to see that algorithm Amplify runs in time polynomial in n, 1/ε,
and 2d. To argue its correctness, first we show (Claim 5.2) that the distributions
D0 and D1 are at noticeable statistical distance. Then we show (Claim 5.6)
that with high probability over G, for most i the distribution D̂i is statistically
close to Dxi .

Claim 5.2. Let K be a sufficiently large constant, P be any nonconstant pred-
icate and x and x′ be two assignments such that x is ε/16-balanced and x′ has
correlation ε with x. Then the statistical distance between D0 and D1 is at
least (ε2/K)d−1.

We observe that the distance can be as small as ε−Ω(d), for example if P
is the XOR predicate on d variables, x is any balanced assignment, and x′ is
an assignment that equals 1 on a 1 − ε fraction of inputs and 0 on the other
inputs.

To give some intuition about the proof, consider the extreme case when
x′ = x. Because P is not constant, there must exist some setting for a2, . . . , an
such that P (0, a2, . . . , an) 6= P (1, a2, . . . , an). Then the samples of the type
(a′2, . . . , a

′
n, ?) are completely disjoint in D0 and D1, and the distributions can

be distinguished on the samples of this type which occur with probability at
least 2−Ω(d).
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When x′ 6= x, it is no more the case that for the proper choice of a′2, . . . , a
′
n,

the samples of the type (a′2, . . . , a
′
n, ?) are disjoint in the two distributions.

However, we can still argue that the statistical distance between them is no-
ticeable.

We will need a standard lemma about linear operators. For a simple proof,
see for instance Theorem 4.3 in Stewart & Sun (1990).

Lemma 5.3. Let T be a linear operator from Rn to Rn and σ be the smallest of
its singular values. Assume that σ 6= 0. Then for every g ∈ Rn, ‖Tg‖ ≥ |σ|·‖g‖.

Proof of Claim 5.2. We observe that

(5.4) Pr[a′ = 0] ≥ ε/2 and Pr[a′ = 1] ≥ ε/2, where (a, a′) ∼ F .

If this was not the case, for example Pr[a′ = 0] < ε/2, using the condition
that x is ε/16 balanced we would have that Pr[a = 1] < 1/2 + ε/16, and so
Pr[a′ = a] ≤ Pr[a′ = 0] + Pr[a = 1] < 1/2 + ε, contradicting the fact that
x′ has correlation ε with x. Similarly we can rule out the possibility that
Pr[a′ = 1] < ε/2.

It follows that the probability Fd−1(a′2, . . . , a
′
d) of sampling a′2, . . . , a

′
d in

d − 1 independent copies of F must satisfy Fd−1(a′2, . . . , a
′
d) ≥ (ε/2)d−1 for

every a′2, . . . , a
′
d. The statistical distance sd(D0,D1) between D0 and D1 can

now be lower bounded by:

sd(D0,D1) =
∑

a′∈{0,1}d−1

2 · Fd−1(a′) ·
∣∣EFd−1 [P (0, a)− P (1, a) | a′]

∣∣
≥2 · (ε/2)d−1 ·maxa′

∣∣EFd−1 [P (0, a)− P (1, a) | a′]
∣∣

≥2 · (ε/4)d−1 ·
(∑

a′∈{0,1}
EFd−1 [P (0, a)− P (1, a) | a′]2

)1/2

,(5.5)

where a = (a2, . . . , ad), a′ = (a′2, . . . , a
′
d), and the conditional expectation

EFd−1 [ · | a′] is taken over independent choices of a2, . . . , ad where each ai
is sampled from the distribution F conditioned on a′i.

To lower bound (5.5) we define the linear operator Td−1 on the space of
functions g : {0, 1}d−1 → R defined by

(Td−1g)(a′2, . . . , a
′
d) = EFd−1 [g(a2, . . . , ad) | a′2, . . . , a′d].

With this notation, the expression (5.5) equals 2(ε/4)d−1‖Td−1g‖, where g is
the function g(a2, . . . , ad) = P (0, a2, . . . , ad)− P (1, a2, . . . , ad). We will shortly
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prove that the smallest singular value of Td−1 is at least (ε/32)d−1. Applying
Lemma 5.3, we obtain that sd(D0,D1) ≥ 2(ε2/128)d−1.

We are left with showing that the smallest singular value of Td−1 is at
least (ε/32)d−1. The operator Td−1 is a (d − 1)-wise tensor product of T1: If
eb2,...,bd : {0, 1}d−1 → {0, 1} is the point function such that eb2,...,bd(a2, . . . , ad) =
1 if ai = bi for all 2 ≤ i ≤ d and 0 otherwise, then we have the decomposition

(Td−1eb2,...,bd)(a′2, . . . , a
′
d) = ((T1eb2)(a

′
2)) · · · ((T1ebd)(a′d))

This follows from the independence of the samples (a2, a
′
2), . . . , (ad, a

′
d). Since

the singular values of the tensor product of matrices are obtained by taking
pairwise products of the singular values of the matrices in the tensor product, it
follows that the smallest singular value of Td−1 is σd−1, where σ is the smallest
singular value of T1. We now lower bound this singular value.

Let M be a 2×2 matrix representation of the operator T1. Then the entries
of M are

M(c, c′) = PrF [a = c | a′ = c′] = pcc′/(p0c′ + p1c′).

where pcc′ is the probability of the pair (c, c′) in F . The singular values σ, σ′

of M , where σ ≤ σ′, are the square roots of the eigenvalues of MTM , so they
satisfy the relations

σ2 + σ′2 = Tr(MTM)

σ2σ2 = det(MTM) = det(M)2

from where σ2 ≥ det(M)2/Tr(MTM). Since M is a matrix of probabilities,
Tr(MTM) ≤ 4, so it remains to show that |det(M)| ≥ ε/16. Calculating
det(M) we obtain

det(M) =
p00p11 − p10p01

(p00 + p10)(p01 + p11)
≥ p00p11 − p10p01.

Without loss of generality let us assume p10 + p11 ≤ 1/2. Then we can write

p00p11 − p10p01 = (p00 + p01)p11 − (p10 + p11)p01.

Since x is ε/16-balanced, 1/2 − ε/16 ≤ p00 + p01, p10 + p11 ≤ 1/2 + ε/16, and
we obtain that

|(p00p11 − p10p01)− (p11 − p01)/2| ≤ ε/16.

We now show that |p11 − p01| ≥ ε/4. Suppose this was not the case. Then

|p00 − p10| ≤ |(p00 + p01)− (p10 + p11)|+ |p11 − p01| ≤ 2 · ε/16 + ε/4 < ε/2

and so |p00 + p11 − p01 − p10| < ε, contradicting the assumption that x and x′

are ε-correlated. It follows that |det(M)| ≥ ε/16, concluding the proof. �
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Claim 5.6. LetK be a sufficiently large constant. Assume thatD > K2Kd/η2.
With probability at least 1 − 2−Kn over the choice of G, for every pair of as-
signments x and x′, for at least a 1 − 2−Kd fraction of the inputs i, D̂i is at
statistical distance at most η from Dxi , where D̂i is the distribution defined in
step 2 of Algorithm Amplify.

Proof. Set δ = 2−Kd−1. Fix x and x′. Let Si be the set of all outputs of
fG,P whose first input is i. By Lemma A.1 (Appendix A), with probability
1 − 2−Ω(δDn), all but δn of the sets Si have size at least D/2. Fix i such that
|Si| ≥ D/2. We now upper bound the probability that the statistical distance
between D̂i and Dxi is more than η. The distribution Dxi has support size
2d, so it is sufficient to upper bound the probability that probabilities of any
outcome in the two distributions differs by more than η/2d. By the Chernoff
bound (applied to the sum of indicator variables that a given outcome ω is
observed in each of the samples), this probability is at most 2−Ω(η2D/4d). Taking
a union bound over all 2d outcomes and using the assumption η2D > Kd4d,
we conclude that the statistical distance between the two distributions is at
most η with probability 1− 2−Ω(η2D/4d) > 1− 2−(K+4)/δ (using the assumption
D > K2Kd/η2). Since the events that the statistical distance between Dxi and
D̂i exceed η are independent over i (conditioned on the sets S1, . . . , Sn), by the
union bound, the probability that this event happens for δn of those is such
that |Si| ≥ D/2 is at most(

n

δn

)(
2−(K+4)/ε

)εn ≤ 2n · 2−(K+4)n = 2−(K+3)n.

Therefore, with probability at least 1− 2−Ω(δDn) − 2−(K+3)n ≥ 1− 2−(K+2)n, at
least (1 − 2−Kd)n of the pairs of distributions (Dxi , D̂i) are within statistical
distance η. The claim follows by taking a union bound over all pairs of assign-
ments (x, x′). �

Proof of Proposition 5.1. Let K be a sufficiently large constant. By
Claim 5.6 with η = (ε2/K)d−1/2, with probability at least 1 − 2−Kn over the
choice of G, for all pairs of inputs (x, x′) and all but 2−Kd fraction of the inputs
i, the statistical distance between Dxi and D̂i is at most η. Let G be such a
graph, x′ be any assignment, and x be any assignment that is ε/16-balanced.
By the Chernoff bound, x is ε/16-balanced with probability 1 − 2−Ω(ε2n). By
Claim 5.2, the statistical distance between D0 and D1 is at least 2η, so for all
but a 2−Kd fraction of inputs i, algorithm Amplify will set zF ,i = xi. �
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A. A fact about sampling

We give a fact about sampling which we use throughout our analysis. In the
random graph used in Goldreich’s function with n inputs and m = Dn outputs,
for any fixed input position k of the predicate P , in expectation an input of fG,P
appears in position k exactly D times. The following lemma shows that this is
representative for most inputs. In the statement of the lemma, H represents
the subgraph of G obtained by keeping only the kth incident edge of every
output.
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Lemma A.1. Fix ε < 1/2, η < 1 and suppose D > (8/η2) log(1/ε). Let H be
a random bipartite graph with n vertices on the left, Dn vertices on the right,
and where each vertex on the right has exactly one neighbor on the left, chosen
uniformly and independently at random. For a left vertex i, let Ni denote the
number of its neighbors. Then with probability 1 − 2−Ω(η2εDn), fewer than εn
of the random variables Ni take value less than (1 − η)D (resp., more than
(1 + η)D).

Proof. Let I denote the set of those i such that Ni < D/2. By a union
bound, the probability of |I| ≥ εn is at most

(
n
εn

)
times the probability that

N1, . . . , Nεn < (1 − η)D. Let N = N1 + · · · + Nεn. Then Pr[N1, . . . , Nεn <
(1 − η)D] ≤ Pr[N < (1 − η)εDn]. Since N is a sum of Dn independent
Bernoulli variables, each with probability ε, by a Chernoff bound we have
Pr[N < (1− η)εDn] ≤ e−η

2εDn/3. Therefore the probability that fewer than εn
of the Ni take value less than (1 − η)D is at most

(
n
εn

)
· e−η2εDn/3 = 2−Ω(η2εn)

(using the bound
(
n
εn

)
≤ 22nε log(1/ε) which holds for ε < 1/2 and sufficiently

large n, together with the assumption D > (8/η2) log(1/ε)). The probability
that more than εn of the Ni exceed (1 + η)D is calculated analogously. �
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