Gap Amplification Fails Below 1/2

Andrej Bogdanov

June 1, 2005

Abstract

The gap amplification lemma of Dinur (ECCC TR05-46) states that the satisfiability gap of every d-regular constraint expander graph G (with self-loops) can be amplified by graph powering, as long as the satisfiability gap of G is not too large. We show that the last requirement is necessary. Namely, for infinitely many d and every t there exists an integer n and a d-regular constraint expander G on n vertices over alphabet $\{0,1\}$ such that $\overline{\operatorname{SAT}}(G) \geq 1 / 2-O(1 / \sqrt{d})$, but $\overline{\operatorname{SAT}}\left(G^{t}\right) \leq 1 / 2$.

The main technical tool in Dinur's recent combinatorial proof of the PCP theorem [Din05] is the following gap amplification lemma:

Lemma 1 ([Din05, Lemma 3.4]). Let $\lambda<d$, and $|\Sigma|$ be arbitrary constants. There exists a constant $\beta=\beta(\lambda, d,|\Sigma|)$ such that for every t and every d-regular constraint graph G over alphabet Σ with self-loops and $\lambda(G)<\lambda, \overline{\operatorname{SAT}}\left(G^{t}\right) \geq \beta \sqrt{t} \min (\overline{\mathrm{SAT}}(G), 1 / t)$.

Here $\lambda(G)$ denotes the second largest eigenvalue of the graph G, and $\overline{\operatorname{SAT}}(G)$ denotes the satisfiability gap of G, namely the fraction of constraints of G that every assigmnent leaves unsatisfied.

A question of interest is whether the dependency on $1 / t$ is necessary in the above statement. In particular, is it true that for large enough $t=t(\beta)$, say, $\overline{\operatorname{SAT}}\left(G^{t}\right) \geq 2 \overline{\mathrm{SAT}}(G)$? Such a result would imply, for arbitrary $\epsilon>0$, the NP-hardness of distinguishing whether instances of a certain type of 2-CSP are satisfiable or $1-\epsilon$ far from satisfiable, ${ }^{1}$ thereby providing an alternative to Raz's parallel repetition theorem [Raz95] in certain applications.

This is, however, not the case. In fact, we show that for every pair of constants d and t there exists an integer n and a d-regular constraint expander G with self-loops on n vertices over alphabet $\{0,1\}$ such that $\overline{\operatorname{SAT}}(G) \leq 1 / 2+O(1 / \sqrt{d})$, but $\overline{\mathrm{SAT}}\left(G^{t}\right) \geq 1 / 2$. We make use of the following construction:

Construction 2. For infinitely many integers d there exist infinitely many n and $a d$-regular graph on n vertices G with: (1) G has girth $\frac{2}{3} \log _{d} n$; (2) $\lambda(G)=2 \sqrt{d-1}$; (3) every two-partition of G is violated by at least a $1 / 2-2 / \sqrt{d-1}$ fraction of edges.

Proof. The non-bipartite expanders of Lubotzky et al. [LPS88] have the desired properties. Properties (1) and (2) are explicit in [LPS88]. We derive (3) from (2). By the expander mixing lemma, for every set S of vertices of size θn,

$$
|e(S, \bar{S})-\theta(1-\theta) d n| \leq \lambda(G) \sqrt{\theta(1-\theta)} n,
$$

[^0]where $e(S, \bar{S})$ is the number of edges crossing the cut (S, \bar{S}). Since $\theta(1-\theta)$ is maximized at $\theta=1 / 2$, we have that
$$
e(S, \bar{S}) \leq d n / 4+\sqrt{d-1} n
$$

Therefore every partition is violated by at least $d n / 4-\sqrt{d-1} n$ edges, establishing property (3).
Take a graph G given by the construction, and add a self-loop to every vertex. Now consider the following constraint satisfaction problem on G : The alphabet is $\Sigma=\{0,1\}$, the edge constraints are dummy (always satisfied) on loops, and inequality constraints on the other edges. By property (3) of the construction, $\overline{\operatorname{SAT}}(G) \geq 1 / 2-O(1 / \sqrt{d})$. On the other hand, if we choose $n>d^{8 t}$, the graph G^{t} will have girth at least $4 t$, so the t-neighborhood of every vertex in G is a tree, and for every edge e in G^{t}, the union of t-neighborhoods of the endpoints of e in G is also a tree.

An assignment $\bar{\sigma}: V \rightarrow \Sigma^{d^{t}}$ in G^{t} describes, for each $v \in V, v$'s "view" $\bar{\sigma}_{v}$ of assignments to vertices at distance at most t from v. Notice that for each $v \in V$ there are exactly two possibilities for $\bar{\sigma}_{v}$ that are consistent with local constraints. Namely, choose an arbitrary value (0 or 1) for v 's view of itself, and propagate this assignment to v 's view of its neighbors, their neighbors, etc., in a way that is consistent with the inequality constraints. For example, if $\bar{\sigma}_{v}(v)=0$, then all vertices w at even distance from v (up to $2\lfloor t / 2\rfloor$) are assigned $\bar{\sigma}_{v}(w)=0$, and all w s at odd distance from v are assigned $\bar{\sigma}_{v}(w)=1$.

To show $\overline{\operatorname{SAT}}\left(G^{t}\right) \geq 1 / 2$, we choose $\bar{\sigma}$ at random. That is, for each v, we choose between the two possibilities for $\bar{\sigma}_{v}$ by tossing a fair independent coin. Now for an arbitrary edge (u, v) of G^{t}, the assignments $\bar{\sigma}_{u}$ and $\bar{\sigma}_{v}$ will be consistent with probability $1 / 2$, so this random $\bar{\sigma}$ satisfies half the constraints in expectation. It follows that there must exist an assignment satisfying half the constraints in G^{t}.
Acknowledgments. I thank Omid Etesami, Elchanan Mossel, and Luca Trevisan for discussions.

References

[Din05] Irit Dinur. The PCP theorem via gap amplification. Technical Report TR05-46, Electronic Colloquium on Computational Complexity, 2005.
[LPS88] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8:261-277, 1988.
[Raz95] Ran Raz. A parallel repetition theorem. In Proceedings of the 27th ACM Symposium on Theory of Computing, pages 447-456, 1995.

[^0]: ${ }^{1}$ The alphabet size would depend on ϵ but not on the instance size.

