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Abstract

We investigate constructions of pseudorandom generators that fool polynomial tests of de-
gree d in m variables over finite fields F. Our main construction gives a generator with seed
length O(d4 logm(1 + log(d/ε)/ log logm) + log |F|) bits that achieves arbitrarily small bias ε
and works whenever |F| is at least polynomial in d, logm, and 1/ε. We also present an alternate
construction that uses a seed that can be described by O(c2d8m6/(c−2) log(d/ε) + log |F|) bits
(more precisely, O(c2d8m6/(c−2)) field elements, each chosen from a set of size poly(cd/ε), plus
two field elements ranging over all of F), works whenever |F| is at least polynomial in c, d,
and 1/ε, and has the property that every element of the output is a function of at most c field
elements in the input. Both generators are computable by small arithmetic circuits. The main
tool used in the construction is a reduction that allows us to transform any “dense” hitting set
generator for polynomials into a pseudorandom generator.

1 Introduction

A degree d test over a field F computes a multivariate polynomial of degree1 d and attempts
to distinguish between the cases when the inputs of the polynomial are chosen independently at
random from F and the case when they are chosen from a smaller pseudorandom set. We are
interested in unconditional constructions of pseudorandom generators for degree d tests.

A well studied subclass of degree d tests are the linear tests of Naor and Naor [NN90]. The
epsilon biased generators of Naor and Naor, designed to fool all linear tests over the binary field, have
found wide applicability, from algorithmic derandomization [NN90] to recent uses in derandomizing
low-degree tests and constructions of short PCPs [BSVW03]. Several efficient constructions of
generators for linear tests over the binary field with almost optimal seed length are known; Alon,
Goldreich, H̊astad and Peralta [AGHP90] describe three such constructions.

From a computational point of view, the class of linear functions over the binary field is very
restricted. In particular, any such function in m variables can be computed by an oblivious branch-
ing program of width two and length m. It is therefore somewhat surprising that a generator
providing security only against such weak adversaries has turned out to be so useful. Motivated
by the utility of generators against linear functions, we consider a natural generalization of such
generators, namely generators that fool polynomials of degree higher than one.

In the case of the binary field, pseudorandom generators against low-degree polynomials were
considered by Luby, Veličković, and Wigderson [LVW93].2 They construct a generator that maps
∗Computer Science Division, University of California, Berkeley. adib@cs.berkeley.edu.
1Throughout the paper, “degree” means total degree.
2It is observed in [LVW93] that these generators also work over fields of size polynomial in the length of the

generator output.
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n bits of input into dnO(logn)/ε bits of output. Viola [Vio05] recently simplified this construction,
achieving a generator with the same stretch.3 Both constructions are based on the existence of
explicit functions that are average-case hard against AC0-like classes of circuits, and it seems that
better circuit lower bouds are necessary in order to improve the parameters in these constructions.
(For the special case of low-degree polynomials that compute “predictor tests” over large fields,
Kalyanaraman and Umans [KU05] recently constructed an essentially optimal generator.)

We show how to construct a pseudorandom generator that fools all tests of degree d over fields
of size at least logarithmic in the number of variables. For constant bias and constant d, our
generator has seed length that is within a constant factor of optimal; namely, it maps n bits of seed
2Od(n) field elements of output. The bias of the generator is roughly inverse polynomial in the field
size. Moreover, the generator is computed by an arithmetic circuit of size polynomial in the input
parameters.

Another problem that has commanded recent interest is the study of pseudorandom generators
where every element of the output depends on only a constant number (say c) elements of the input.
In the setting of boolean circuits, the question was initiated by Cryan and Miltersen [CM01]. Mossel,
Shpilka, and Trevisan [MST03] showed that, for large c, there exist (nonuniform) generators that
map n bits of input into nΩ(

√
c) bits of output and fool linear tests with bias exp(−n1/2

√
c). More

recently, Applebaum, Ishai, and Kushilevitz [AIK04] showed how to obtain cryptographically secure
pseudorandom generators in this model under standard assumptions.

We show an explicit construction of a generator that fools all degree d tests over fields and
where each output element depends on at most c seed elements. The generator has constant bias
even over fields whose size is polynomial in c and d and independent of the length of the input. For
constant c and d, our generator maps a seed of n field elements into O(n(c−1)/4) elements of output,
and its bias can be made an arbitrarily small inverse polynomial in n, if the field is large enough.
(This is optimal, up to the constant in the exponent, for fields whose size is at most polynomial in
n.) Again, our generator can be computed by a small arithmetic circuit.
Connection to arithmetic identity testing Closely related to the construction of pseudo-
random generators against algebraic adversaries is the problem of black-box derandomization of
polynomial identity tests. In this model, one is allowed to evaluate a “black box” polynomial p in
m variables on a set of inputs, typically over a finite field F, and is asked to decide whether p is
identically zero. By the Lemma of Schwartz and Zippel [Sch80, Zip79], we know that if the size of
F is slightly bigger than the total degree of p, and p is not identically zero, then a random point
is likely to be a witness that p is nonzero. The derandomization challenge is to produce a smaller
sample space S ⊆ Fm, such that all nonzero polynomials p from a certain class have a witness in
S. In this scenario, it is sufficient for the set S to be a “hitting set generator” rather than a full
pseudorandom generator.

We show that the construction of pseudorandom generators for low degree polynomials reduces
to the construction of “dense” hitting set generators for polynomials of slightly larger degree. This
can be compared to the setting of Boolean circuits, where the existence of an efficient hitting set
generator for circuits would imply a derandomization of BPP [ACR98].

We note that for the class of polynomials computable by small arithmetic circuits, Kabanets
and Impagliazzo [KI03] show a hitting set generator with polylogarithmic (in the output) seed
length for identity testing under the assumption that there exists an exponential-time computable
family of polynomials that requires exponential size arithmetic circuits. However, it is not clear
whether this hitting set generator is pseudorandom.

3In fact, both [LVW93] and [Vio05] fool more general classes of tests, which in particular include low-degree
polynomials.
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Our results Let F be a field, X a finite set, G a function from X to Fm, and F a family of
polynomials from F

m to F. We say G is a hitting set generator of density α for F if for every p ∈ F ,
either p is the zero polynomial or Prx∼X [p(G(x)) 6= 0] > α. We say G is a pseudorandom generator
of bias ε for F if for every p in F , the statistical distance between the distributions p(G(x)) and
p(y1, . . . , ym), when the inputs are chosen uniformly and independently from F, is at most ε. The
field F is finite of and of arbitrary characteristic. We show the following:

Theorem 1.1. For every integer m > 0, d > 0, fraction ε > 0, and set S ⊆ F of size at
least d10 log2m · 1/ε2, there exists a pseudorandom generator G : Sn × F2 → F

m of bias O(ε +
d2|F|−1/2 + d6|F|−1) for the family of degree d polynomials over F in m variables, with n =
O(d4 logm/ log logm). Moreover, G can be represented by an arithmetic circuit over F of size
Õ(md4) that is constructible in time Õ(md4).

Theorem 1.2. For every integer m > 0, d > 0, c > 4, fraction ε > 0, and set S ⊆ F of size at least
cd6/ε2, there exists a pseudorandom generator G : Sn×F2 → F

m of bias O(ε+d2|F|−1/2 +d6|F|−1)
for the family of degree d polynomials over F in m variables, where n = O(c2d8m6/(c−2)), and every
output element of G depends on at most c inputs. Moreover, G can be represented by an arithmetic
circuit over F of size O(mc) that is constructible in time m(6+o(1))d4

.

Both of these theorems will be proved by first constructing hitting set generators of good den-
sity (Theorems 5.1 and 5.2), and then transforming the hitting set generator into a pseudorandom
generator. A general reduction that enables us to carry out this transformation is shown in Theo-
rem 3.1. The proofs of Theorems 1.1 and 1.2 are in Section 6.

In Section 7 we show two unrelated applications of the Theorems from Section 5. The first is an
improvement in the length of the random seed of the Klivans-Spielman hitting set generator when
the number of variables is larger than the degree of the polynomial and the number of monomials.
The second is a construction of an arithmetic hitting set generator over the binary field.
Our construction The main tool in our construction of pseudorandom generators is a reduction
that allows us to turn a hitting set generator of high density for polynomials of degree d in m
variables into a pseudorandom generator for polynomials of degree O(d4) and 3m − 2 variables.
Roughly, to obtain a pseudorandom generator of bias ε, we need a hitting set generator of density
1− ε/d.

Our reduction is based on results from algebraic geometry that characterize the distribution
of zeros of a multivariate polynomial by properties of its factorization. For a polynomial f ∈
F[y1, . . . , ym], the probability that f evaluates to zero over a random input is (1+δ)φ(f)/|F|, where
φ(f) is the number of irreducible factors of f that are also absolutely irreducible, and δ is small
when |F| is a large enough polynomial of d. (For definitions of irreducibility, please see the section
on terminology below.) Moreover, the value φ(f) is preserved with high probability when f is
projected on a random two-dimensional affine plane H in Fm. If we can efficiently choose a plane
H that preserves the value φ(f), we can obtain an estimate for the fraction of zeros of f by counting
the fraction of zeros of the restriction of f on H.

For absolutely irreducible polynomials f , Kaltofen showed that there exist certain polynomial
equations over the parametrization of H such that if the equations do not vanish over a given
set of values, then these values parametrize a surface that preserves φ(f). This is the principal
observation that allows us to turn a hitting set generator for these polynomial equations into a
pseudorandom generator for the polynomial p.

This leaves us with the problem of constructing a hitting set generator of density 1 − ε for
polynomials of degree d in m variables. Our construction is based on Lemma 4.1, which shows that
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given a nonzero polynomial p(y1, . . . , ym), we can perform a substitution for the variables yi that
reduces the number of variables without making the polynomial vanish.

We mention a related problem studied by Klivans and Spielman [KS01]. They construct a
hitting set generator of density 1− ε for polynomials of degree d in m variables containing no more
than M monomials. Their generator has seed length that is logarithmic in mMd/ε. However, this
generator works only over fields of size polynomial in m. In contrast, our generator allows fields of
size logarithmic in m.

We also observe that it is not difficult to obtain a hitting set generator G of nonzero density for
polynomials of degree d over m variables over a field F of size at least d: The inputs of G are a set
S ⊆ [m] of size d and values x1, . . . , xd ∈ F. The outputs of G are given by Gi(S, x1, . . . , xd) = xj ,
if i is the jth element of S, and 0 if i 6∈ S. It is not difficult to see that if p is nonzero, then p ◦G
is nonzero for at least one input of G.
Terminology and notation For a field F, we use F to denote the algebraic closure of F. We use
Fq for the finite field with q elements. F[x1, . . . , xn] is the ring of polynomials in variables x1, . . . , xn
with coefficients in F. F(x1, . . . , xn) is the field of rational functions (ratios of polynomials) over
x1, . . . , xn with coefficients in F. For brevity of notation, we sometimes use x1...n to denote the list
x1, . . . , xn. (For definitions of these notions, see, e.g. [Lan93].)

A polynomial p ∈ F[x1, . . . , xn] is irreducible over a field extension F′ of F if p cannot be written
as the product of two non-constant polynomials in F′[x1, . . . , xn]. We say p is absolutely irreducible
if it is irreducible over F. Two polynomials are unassociated if they are both nonzero and not a
constant multiple of one another. We use φ(p) to denote the number of unassociated irreducible
factors of p that are also absolutely irreducible.

Given a polynomial p ∈ F[y1, . . . , yk] and polynomials f1, . . . , fk ∈ F[x1, . . . , xn], the composition
p ◦ (f1, . . . , fk) is the polynomial r ∈ F[x1, . . . , xn] given by

r(x1, . . . , xn) = p(f1(x1, . . . , xn), . . . , fk(x1, . . . , xn)).

Given polynomials f1, . . . , fk ∈ F[x1, . . . , xn], we let A(f1, . . . , fk) be the number of their com-
mon zeros—the number of points (a1, . . . , an) ∈ Fn such that f1(a1, . . . , an) = · · · = fk(a1, . . . , an) =
0.

We let Hn denote the set of all two-dimensional affine subspaces of Fn. For H ∈ Hn, let
AH(f1, . . . , fk) = A(f1, . . . , fk) ∩H, the number of common zeros of f1, . . . , fk that lie in H.

Each H ∈ Hn can be parametrized as the set of points (ω1s+η1t+ν1, . . . , wns+ηnt+νn), where
ω1...n, η1...n, ν1...n are fixed elements of F and s, t range over F. (Also, the non-degeneracy condition:
(ω1, . . . , ωn) and (η1, . . . , ηn) are not constant multiples of one another must hold.) For each H, let
us fix a canonical parametrization of this type and define the restriction of f ∈ F[x1, . . . , xn] on H
as the polynomial

f |H(s, t) = f(ω1s+ η1t+ ν1, . . . , wns+ ηnt+ νn).

To avoid confusion, we will reserve this notation for properties that are independent of the particular
parametrization that is chosen for H. In particular, the degree, the number of variables, the
number of irreducible factors, and the number of absolutely irreducible factors of a polynomial is
independent of the choice of parametrization.

The `1 distance between two distributions D1 and D2 over a finite set Ω, denoted by |D1 −D2|,
is the quantity

∑
ω∈Ω |D1(ω)−D2(ω)|. The statistical distance between D1 and D2 is the maximum

of D1(T ) − D2(T ) over all events (statistical tests) T ⊆ Ω. A simple argument shows that the
statistical distance equals half the `1 distance.

An (l, α) combinatorial design over a universe U is a family of subsets S1, . . . , Sm of U such
that for every i, |Si| < l and for every i 6= j, |Si ∩ Sj | ≤ α.
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2 Counting zeros of multivariate polynomials

Before we describe our pseudorandom generator for low degree polynomials, let us look at the
distribution of values of a low degree polynomial p ∈ F[x1, . . . , xn], when its input is chosen uni-
formly at random. In fact, we ask an essentially equivalent question: What is the probability that
p evaluates to zero at a random point? This is a well-known question in algebraic geometry, and
we review some of the results and techniques that will be helpful in our application.

Before we state the general theorem, it is helpful to look at two examples. We are interested
in relating the probability that p evaluates to zero to properties of its factorization. First, let us
consider the case of a nonconstant multivariate polynomial p of degree one. Such a polynomial
is an affine function of its variables, so the distribution of its values is uniform. On the other
hand, a polynomial of degree one does not factor. The other example we consider is the quadratic
polynomial p(x) = x2, over a field F of characteristic other than 2. The probability that p(x) takes
the value c ∈ F is 2/|F| if c is a quadratic residue, 1/|F| if c = 0, and zero otherwise. This is
reflected in the factorization of the polynomial p(x)− c: If c is a quadratic residue, then x2− c has
two distinct factors. If c = 0, then x2 − c has a repeated factor. If c is a nonresidue, then x2 − c
does not factor, not even over the algebraic closure of F.

Theorem 2.1. Suppose |F| > 3d4− 4d3 + 3d2 + 20, n ≥ 2. For every f ∈ F[x1, . . . , xn] of degree d,∣∣A(f)− φ(f)|F|n−1
∣∣ ≤ 5d2|F|n−3/2 + (4d6 + 8d3 + 40)|F|n−2 +O(d4|F|n−3).

To prove 2.1, we use an approach introduced by Schmidt [Sch74]: Reduce the multivariate case
to a bivariate case, which is covered by a theorem of Weil, stated below. The bivariate polynomial
in question will be a restriction of the multivariate polynomial, whose number of zeros we are
interesting in estimating, to a suitably chosen two-dimensional affine plane in Fn. Using results by
Kaltofen [Kal95], we manage to avoid a part of Schmidt’s analysis, and obtain better parameters,
at least for our purposes. (A similar analysis was carried out by Cafure and Matera [CM04].)

2.1 The number of zeros of an absolutely irreducible polynomial

The number of zeros of a bivariate absolutely irreducible polynomial is characterized by the following
result. We note that its proof is not elementary, but an analogous result with slightly worse
parameters can be obtained by elementary methods [Sch73]. All the other results quoted in this
Section have elementary proofs.

Lemma 2.2 ([Wei48],[Sch74, Section 1]). If f ∈ F[s, t] is of degree d and absolutely irreducible,
then |A(f)− |F|| < d2

√
|F|+ d.

To apply this result to the multivariate case, we want to relate the number of zeros of a
polynomial f ∈ F[x1, . . . , xn] to the number of zeros of a restriction of f on a suitably chosen affine
plane. In fact, Schmidt considers what happens when f is restricted to a random plane H in Hn.
It is immediate that EH∼Hn [AH(f)] = A(f)|F|n−2, and a simple counting argument also shows the
following:

Lemma 2.3 ([Sch74, Lemma 6]). For every f ∈ F[x1, . . . , xn], VarH∼Hn [AH(f)] ≤ d|F|.

Now, to apply Lemma 2.2 to the restriction f |H of f on a random plane H, we need to know
the value φ(f |H). For starters, let us assume that f is absolutely irreducible. This case is covered
by a theorem of Kaltofen [Kal95]. Kaltofen’s theorem implies that f |H is absolutely irreducible
over most planes in Hn. Moreover, the parametrizations of planes over which p is not absolutely
irreducible must satisfy certain polynomial equations of low degree.
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Theorem 2.4 ([Kal95, Theorem 5]). For every f ∈ F[x1, . . . , xn] of degree d > 0 there exists a
nonzero polynomial Γ ∈ F[v1...n, w2...n] of degree 2d2 such that the following holds. If v1...n, w2...n ∈ F
satisfy Γ(v1...n, w2...n) 6= 0, then there exists a nonzero polynomial Ψ ∈ F[z2...n] of degree 3

2d
4−2d3 +

1
2d

2 such that if z2...n ∈ F satisfy Ψ(z2...n) 6= 0, then the polynomial

r(s, t) = f(s+ v1, w2s+ z2t+ v2, . . . , wns+ znt+ vn)

is absolutely irreducible in F[s, t].

Kaltofen’s Theorem will be useful not only as a tool in the proof of Theorem 2.1, but also in
the construction of the pseudorandom generator in Section 3. In fact, to prove Theorem 2.1 the
following Corollary is sufficient:

Corollary 2.5. For every f ∈ F[x1, . . . , xn] of degree d > 0, we have that

PrH∼Hn [f |H is absolutely irreducible] ≥ 1− (3
2d

4 − 2d3 + 3
2d

2 + 10)/|F|.

Proof. Follows from Schwartz-Zippel and Proposition A.1.

Putting these results together, we obtain the following estimate for the number of zeros of a
multivariate absolutely irreducible polynomial:

Proposition 2.6. Suppose |F| > 3d4−4d3+3d2+20. Let f ∈ F[x1, . . . , xn] be absolutely irreducible.
Then |A(f)− |F|n−1| ≤ 5d2|F|n−3/2.

Proof. If n = 2, this follows directly from Lemma 2.2, so let us assume n ≥ 3. By Lemma 2.3, we
have that VarH∼Hn [AH(f)] ≤ d|F|. By Chebyshev’s inequality, it follows that

Pr
H∼Hn

[|AH(f)−A(f)/|F|n−2| ≤ 2
√
d|F|] ≥ 3/4.

From Corollary 2.5, we have that PrH∼Hn [f |H is absolutely irreducible] ≥ 1/2. These two condi-
tions imply that there exists at least one H ∈ Hn such that both |AH(f)−A(f)/|F|n−2| ≤ 3

√
d|F|

and f |H is absolutely irreducible. By Lemma 2.2, we have that |AH(f)− |F|| < d2
√
|F|+ d, so by

the triangle inequality

|A(f)/|F|n−2 − |F|| < 3
√
d|F|+ d2

√
|F|+ d ≤ 5d2

√
|F|.

The claim follows after multiplying by |F|n−2.

2.2 The number of zeros of an arbitrary polynomial

To extend Proposition 2.6 to an arbitrary multivariate polynomial f , we will estimate the number
of zeros of each irreducible factor of f separately and combine these estimates using inclusion-
exclusion. To realize this plan, we need to have estimates for the number of zeros of irreducible
factors of f that are not absolutely irreducible, and the number of common zeros of two irreducible
polynomials f and g. Again, the counting goes by reduction to the bivariate case, and is carried
out via the following two results.

Lemma 2.7 ([Kal95, Corollary 2]). Let F be a perfect field.4 For every irreducible f ∈
F[x1, . . . , xn], and random ν1...n, ω2...n, η2...n ∈ F,

Pr[f(s+ ν1, ω2s+ η2t+ ν2, . . . , ωns+ ηnt+ νn) is irreducible in F[s, t]] ≥ 1− 2d4/|F|.
4In particular, every finite field is perfect.

6



Lemma 2.8 ([HW99, Lemma 2.1]). Suppose f ∈ F[x1, . . . , xn] is irreducible but not abso-
lutely irreducible. Then for every (a1, . . . , an) such that f(a1, . . . , an) = 0 and every 1 ≤ i ≤ n,
∂f/∂xi(a1, . . . , an) = 0.

We begin with a technical lemma, which will also be used in Section 3.

Proposition 2.9. Let p1, p2 be unassociated polynomials in F[x1, . . . , xn] of degree d. There exists
a nonzero polynomial Φ ∈ F[v1...n, w2...n, z2...n] of degree 3d such that if Φ(v1...n, w2...n, z2...n) 6= 0,
then r1 and r2 are unassociated in F[s, t], where

ri(s, t) = pi(s+ v1, w2s+ z2t+ v2, . . . , wns+ znt+ vn)

for i = 1, 2.

Proof. Consider the expressions Pi(s, t, v1...n, w2...n, z2...n) = pi(s+v1, w2s+z2t+v2, . . . , wns+znt+
vn), for i = 1, 2, and Q = P1/P2. We think of Pi as polynomials in the ring F[s, t, v1...n, w2...n, z2...n],
and Q as a rational function in the field of fractions F(s, t, v1...n, w2...n, z2...n). We will show that
Q 6∈ F(v1...n, w2...n, z2...n); that is, Q must depend on s and/or t. To obtain this conclusion, it
is sufficient to show that there exist values ν1...n, ω2...n, η2...n ∈ F for v1...n, w2...n, z2...n such that
Q(s, t, ν1...n, ω2...n, η2...n) 6∈ F. In fact, we will show that Q(s, t, ν1...n, ω2...n, η2...n) 6∈ F for a random
choice of ν1...n, ω2...n, η2...n ∈ F.

For the rest of the proof, we will assume that |F| > d2. If this is not the case, we can choose an
extension F′ of F of size at least d2 and apply the argument to F′ instead of F.

For every constant λ ∈ F, let pλ = p1 − λp2. Since p1/p2 6∈ F, it follows that pλ 6= 0 for all
λ ∈ F. For H = (ν1...n, ω2...n, η2...n) ∈ F3n−2, let rλH denote the polynomial

rλH(s, t) = pλ(VH(s, t)) ∈ F[s, t], where
VH(s, t) = (s+ ν1, ω2s+ η2t+ ν2, . . . , ωns+ ηnt+ νn).

Notice that for a random choice of H and random s ∈ F, the points VH(0, 0) and VH(s, 1) are
independent and uniformly distributed in Fm, so by the Schwartz-Zippel Lemma,

PrH,s[pλ(VH(0, 0)) = 0 and pλ(VH(s, 1)) = 0] ≤ d2/|F|2.

In particular, it follows that

PrH [rλH(s, t) = 0] ≤ PrH [pλ(VH(0, 0)) = 0 and for all s, pλ(VH(s, 1)) = 0]

≤ PrH,s[pλ(VH(0, 0)) = 0 and pλ(VH(s, 1)) = 0]

≤ d2/|F|2.

By a union bound, PrH [for all λ, rλH(s, t) 6= 0] ≥ 1 − d2/|F| > 0, so there must exist at least one
H such that for all λ, rλH(s, t) 6= 0. For this choice of H, it follows that P2(s, t, ν1...n, ω2...n, η2...n)
cannot be any constant multiple of P1(s, t, ν1...n, ω2...n, η2...n), so that Q(s, t, ν1...n, ω2...n, η2...n) 6∈ F.

Now write Pi(s, t, v1...n, w2...n, z2...n) =
∑

j,k φi,j,k(v1...n, w2...n, z2...n)sjtk, for i = 1, 2. Here φi,j,k
are polynomials of degree at most d. Since Q = P1/P2 does not belong to F(v1...n, w2...n, z2...n),
there must exist two pairs of indices (j′, k′) and (j′′, k′′) such that

det
[
φ1,j′,k′ φ1,j′′,k′′

φ2,j′,k′ φ2,j′′,k′′

]
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is nonzero as a polynomial (of degree 2d) over the variables v1...n, w2...n, z2...n. Now define

Φ(v1...n, w2...n, z2...n) = p2(z1, . . . , zn) · det
[
φ1,j′,k′ φ1,j′′,k′′

φ2,j′,k′ φ2,j′′,k′′

]
.

Now consider a set of values ν1...n, ω2...n, η2...n ∈ F such that Φ(ν1...n, ω2...n, η2...n) 6= 0. First,
this implies r2(0, 0) = p2(ν1, . . . , νn) = 0, so that r2 6= 0. Now, let ci,j,k denote the coefficient of
sjtk in pi. By the definition of Φ, we have that

det
[
c1,j′,k′ c1,j′′,k′′

c2,j′,k′ c2,j′′,k′′

]
6= 0

so that r2 cannot be a constant multiple of r1.

Proposition 2.10. Let f and g be unassociated irreducible polynomials in F[x1, . . . , xn] of degree
d each. Then A(f, g) ≤ (2d5 + 4d2 + 20)|F|n−2 +O(d3|F|n−3).

Proof. Define the following events:

1. S1 ⊆ Hn is the set of planes H such that f |H is not a constant multiple of g|H ,

2. S2 ⊆ Hn is the set of planes H such that f |H and g|H are irreducible,

3. S3 ⊆ Hn is the set of planes H such that g|H 6= 0.

All these properties are independent of the parametrization of H. We have that PrHn [S1] ≥
1− (3d+ 10)/|F| (by Propositions 2.9 and A.1), PrHn [S2] ≥ 1− (2d4 + 10)/|F| (by Lemma 2.7 and
Proposition A.1). For S3, we note that a random affine plane is determined by a random choice of
three distinct points in Fn, therefore

PrHn [S3] ≤ Prx,y,z∈Fn [g(x) = g(y) = g(z) = 0|x, y, z distinct]
≤ Pr[g(x) = g(y) = g(z) = 0]/Pr[x, y, z distinct]

≤ (d3/|F|3)/(1− 3/|F|n) = O(d3/|F|3).

IfH ∈ S3, then Prx[x ∈ AH(f, g)] ≤ Prx[x ∈ AH(g)] ≤ d/|F|. If, moreover, H ∈ S = S1∩S2∩S3,
then fH and gH are nonzero, irreducible, and not a constant multiple of each other, so by the Bézout
inequality in the plane, Prx[x ∈ AH(f, g)] ≤ d2/|F|2. Therefore

Prx[x ∈ A(f, g)] = PrH∼Hn,x∼H [x ∈ A(fH , gH)]
≤ Prx∼H [x ∈ A(fH , gH)|H ∈ S] PrH∼Hn [H ∈ S]

+ Prx∼H [x ∈ A(fH , gH)|H ∈ S3 − S] PrH∼Hn [H ∈ S3 − S]
+ Prx∼H [x ∈ A(fH , gH)|H 6∈ S3] PrH∼Hn [H 6∈ S3]

≤ d2/|F|2 · 1 + d/|F| · ((2d4 + 10)/|F|+ (3d+ 10)/|F|) + 1 ·O(d3/|F|3)

= 2d5/|F|2 + (4d2 + 20)/|F|2 +O(d3/|F|3).

For the rest of this Section, let α(d) = αn,F(d) = (2d5 + 4d4 + 20)|F|n−2 +O(d3|F|n−3).

Corollary 2.11. Suppose f, g ∈ F[x1, . . . , xn] are of degree d each, f is irreducible, and f does not
divide g. Then A(f, g) ≤ dα(d).
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Proof. Let g1, . . . , gK be the unassociated irreducible factors of g. Since f does not divide g, f
cannot be a constant multiple of gi for any i. By Proposition 2.10, A(f, gi) ≤ α(d). Therefore
A(f, g) ≤

∑K
i=1A(f, gi) ≤ Kα(d) ≤ dα(d).

Proof of Theorem 2.1. Let k = φ(f). Let f1, . . . , fK be the unassociated irreducible factors of f ,
of degrees d1, . . . , dK , respectively. Supose the factors f1, . . . , fk are absolutely irreducible, and the
factors fk+1, . . . , fK are not absolutely irreducible. We begin by estimating the quantities A(fi),
for 1 ≤ i ≤ K.

If 1 ≤ i ≤ k, then by Proposition 2.6, we have that |A(fi) − |F|n−1| ≤ 5d2
i |F|n−3/2. If k + 1 ≤

i ≤ K, then Lemma 2.8 says that every zero of fi is also a zero of ∂fi/∂xl, for every variable xl. In
particular, A(fi) ≤ A(fi, ∂fi/∂xl). There must be at least one l such that the polynomial ∂fi/∂xl
is nonzero. Also, fi cannot divide ∂fi/∂xl, so by Corollary 2.11, A(fi) ≤ A(fi, ∂fi/∂xl) ≤ diα(di).
Putting these inequalities together, we have that

∣∣A(f)− k|F|n−1
∣∣ ≤ ∣∣A(f)−

∑K

i=1
A(fi)

∣∣+
∣∣∑k

i=1
A(fi)− |F|

∣∣+
K∑

i=k+1

A(fi)

≤
∣∣A(f)−

∑K

i=1
A(fi)

∣∣+
∑k

i=1
5d2

i |F|n−3/2 +
∑K

i=k+1
diα(di)

≤
∣∣A(f)−

∑K

i=1
A(fi)

∣∣+ 5d2|F|n−3/2 + dα(d).

Let dij = max(di, dj). By inclusion-exclusion we have that∣∣A(f)−
∑K

i=1
A(fi)

∣∣ ≤∑
i<j

A(fi, fj)

≤
∑

i<j
α(dij) by Proposition 2.10

≤ dα(d).

The theorem follows.

3 From a hitting set generator to a pseudorandom generator

We now show how to obtain an efficient construction for a pseudorandom generator for low degree
polynomials, assuming the existence of a good hitting set generator. In particular, we establish the
following:

Theorem 3.1. Let G1 : X1 → F
2m−1 be a hitting set generator of density 1− ε for polynomials of

degree 3d2. Let G2 : X2 → F
m−1 be a hitting set generator of density 1− ε for polynomials of degree

max(3
2d

4 − 2d3 + 1
2d

2, 3d2). Suppose that G1 maps x1 ∈ X1 to (v1, . . . , vm, w2, . . . , wm) ∈ F2m−1,
and G2 maps x2 ∈ X2 to (z2, . . . , zm) ∈ Fm−1. Then the map G′ : X1 ×X2 × F2 → F

m given by

G′(x1, x2, s, t) = (s+ v1, w2s+ z2t+ v2, . . . , wms+ zmt+ vm)

is a pseudorandom generator for degree d polynomials of bias O(
√
εd+ d2|F|−1/2 + d6|F|−1).

To simplify notation further in the discussion, we let G denote the product of the generators
G1 and G2. That is, G : X1×X2 → F

3m−2 takes a seed x = (x1, x2) and outputs the concatenation
of G(x1) and G(x2).
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Theorem 2.4 provides a sufficient condition under which an absolutely irreducible polynomial
p ∈ F[y1, . . . , ym] can be “converted” into an absolutely irreducible bivariate polynomial r ∈ F[s, t].
Notice that if we can find values v1...m, w2...m, z2...m in F such that Γ(v1...m, w2...m, z2...m) 6= 0 and
Ψ(v1...m, w2...m, z2...m) 6= 0, then all the coefficients of r will be in the field F, so that r will lie in
F[s, t].

Our proof of pseudorandomness will proceed along the following lines. Given a polynomial
p ∈ F[y1, . . . , ym], we want to argue that for most values c ∈ F, and for most choices x1 ∈ X1 and
x2 ∈ X2, the difference Pr[p(y1, . . . , ym) = c] − Pr[r(s, t) = c] is small. For this, it would suffice
to show that φ(p − c) = φ(r − c); actually, since the events p(y1, . . . , ym) = c and r(s, t) = c with
c ranging over F partition their sample spaces, it will be sufficient to argue that for “most” r,
φ(p− c) ≤ φ(r − c). This is shown in Proposition 3.3 using results from Section 2.

To obtain the condition φ(p− c) ≤ φ(r − c), we will use Proposition 2.9 to ensure that no two
irreducible factors of p− c that are also absolutely irreducible map to the same factors of r− c. We
will also need to ensure that no irreducible factor of p− c reduces to a constant in r − c:

Proposition 3.2. For every nonconstant p ∈ F[x1, . . . , xn] of degree d, there exists a polynomial
Ξ ∈ F[w2...n] of degree d such that if Ξ(w2...n) 6= 0, then r ∈ F[s, t] is not a constant, where

r(s, t) = p(s+ v1, w2s+ z2t+ v2, . . . , wms+ zmt+ vm).

Proof. View r as a polynomial in s, t over the ring of coefficients F[v1...n, w2...n, z2...n]. Observe
that since p is nonconstant, r contains a monomial of the form si, i ≥ 1. Note that the coefficient
in r of si for the maximum such i is nonzero and depends only on w2...n. Choose Ξ to be this
coefficient.

Let p ∈ F[y1, . . . , ym], and G1, G2 be the hitting set generators from Theorem 3.1. Define the
polynomial

rx(s, t) = p(s+ v1, w2s+ z2t+ v2, . . . , wms+ zmt+ vm),

where x = (x1, x2) are the seeds of G1 and G2, (v1...m, w2...m) is the output G1(x1), and (z2...m) is
the output G2(x2). Say that x is good for p if φ(rx) ≥ φ(p).

Proposition 3.3. For every p ∈ F[y1, . . . , ym] of degree d, x is good for p with probability 1− 5ε.

Before we proceed with the proof we observe the following useful fact: Every hitting set generator
G : X → F

m of density 1 − ε for degree d polynomials over F is also a hitting set generator of
density 1− ε for degree d polynomials over F.

Proof. Let p1, . . . , pK denote the distinct irreducible factors of p over F[y1, . . . , ym], of degrees
d1, . . . , dK , respectively. Suppose that the first k = φ(p) of these factors p1, . . . , pk are absolutely
irreducible, and the others are not. Define the following polynomials:

1. For every pi, 1 ≤ i ≤ K let Ξi ∈ F[w2...m] be the polynomial of degree di from Proposition 3.2.
Let Ξ =

∏K
i=1 Ξi.

2. For every pi, 1 ≤ i ≤ k, let Γi ∈ F[v1...m, w2...m] be the polynomial of degree 2d2
i from

Theorem 2.4. Let Γ =
∏k
i=1 Γi.

3. For every pair of polynomials pi, pj , 1 ≤ i < j ≤ k, let Φij ∈ F[v1...m, w2...m, z2...m] be the
polynomial of degree 3 max(di, dj) from Proposition 2.9. Let Φ =

∏
1≤i<j≤k Φij .
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Note that Ξ has degree d, Γ has degree at most 2d2, and Φ has degree at most 3d2.
Say x1 ∈ X1 is good if all three of the following conditions hold: Ξ(w2...m) 6= 0, Γ(v1...m, w2...m) 6=

0, and Φx1(z2...m) = Φ(v1...m, w2...m, z2...m) 6≡ 0 (as a polynomial in F[z2...m]). By the pseudorandom
property of G1, each of these three conditions holds with probability at least 1 − ε, so x1 is good
with probability at least 1− 3ε.

Now fix a good x1. For this x1, let Ψ1, . . . ,Ψk ∈ F[z2...m] denote the polynomials of degree at
most 3

2d
4
i − 2d3

i + 1
2d

2
i guaranteed by Theorem 2.4. Let Ψ =

∏k
i=1 Ψi. Then Ψ is of degree at most∑k

i=1(3
2d

4
i − 2d3

i + 1
2d

2
i ) ≤ 3

2d
4− 2d3 + 1

2d
2. By the hitting set property of G2, with probability 1− ε

over x2, Ψ(z2...m) 6= 0. Also, with probability 1− ε, Φx1(z2...m) 6= 0. Call an x2 that satisfies both
conditions good.

We show that if both x1 and x2 are good, then φ(rx) ≥ φ(p). Fix a good pair x1 and x2 and
for every i, define the polynomial

rx,i(s, t) = pi(s+ v1, w2s+ z2t+ v2, . . . , wms+ zmt+ vm).

First, we observe that since Ξ does not evaluate to zero, all the polynomials rx,i are nonzero. We
now observe that the polynomials rx,1, . . . , rx,k are all absolutely irreducible (by Theorem 2.4),
nonconstant (by Proposition 3.2), and unassociated (by Proposition 2.9). It follows that rx has at
least k = φ(p) unassociated absolutely irreducible factors.

Since x1 is good with probability 1 − 3ε, and conditioned on x1 being good x2 is good with
probability 1− 2ε, it follows that x = (x1, x2) is good with probability 1− 5ε.

We now prove the main Theorem of this Section.

Proof of Theorem 3.1. Let p be an arbitrary polynomial of degree d in F[y1, . . . , ym]. For every
c ∈ F, let pc denote the polynomial pc(y1, . . . , ym) = p(y1, . . . , ym)− c. Let X = X1 ×X2, and for
every x ∈ X and c ∈ F define the polynomials

rx(s, t) = p(s+ v1, w2s+ z2t+ v2, . . . , wms+ zmt+ vm) and
rcx(s, t) = rx(s, t)− c,

where the sequence (v1...m, w2...m, z2...m) is the output of G on input x. Our goal is to show that

1
2

∑
c∈F

∣∣Pry1,...,ym [pc(y1, . . . , ym = 0)]− Prx,s,t[rcx(s, t) = 0]
∣∣ < O(

√
εd+ δ),

where δ = δ(d, |F|) = O(d2|F|−1/2 + d6|F|−1). (We may assume that |F| = Ω(d6), for otherwise the
Theorem holds trivially.)

Our starting point are the estimates of Theorem 2.1, which yield (for all c ∈ F)

|Pry1,...,ym [pc(y1, . . . , ym) = 0]− φ(pc)/|F|| = O(δ/|F|) and (1)
|Prs,t[rcx(s, t) = 0]− φ(rcx)/|F|| = O(δ/|F|) for every x ∈ X. (2)

An immediate consequence of Equations (1) and (2) are the following two formulas, which will be
useful later: ∣∣1−∑

c∈F
φ(pc)/|F|

∣∣ = O(δ) and (3)∣∣1−∑
c∈F

φ(rcx)/|F|
∣∣ = O(δ) for every x ∈ X. (4)
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From Equation (1), it also follows that
∑

c∈F |Pry1,...,ym [pc(y1, . . . , ym) = 0]−φ(pc)/|F|| = O(δ),
so for the rest of the proof it will be sufficient to show that the quantity∑

c∈F

∣∣φ(pc)/|F| − Prx,s,t[rcx(s, t) = 0]
∣∣ =

∑
c∈F

∣∣Ex∼X [φ(pc)/|F| − Prs,t[rcx(s, t) = 0]]
∣∣

≤ Ex∼X
[∑

c∈F

∣∣φ(pc)/|F| − Prs,t[rcx(s, t) = 0]
∣∣] (5)

is at most
√

5εd+O(δ).
By Proposition 3.3, for every c ∈ F, Prx[x is good for pc] > 1− 5ε. In particular, it follows that

Prx,c[x is good for pc] > 1− 5ε, and

Prx[Prc[x is good for pc] > 1−
√

5ε] > 1−
√

5ε.

Let S ⊆ X be the set of all x such that Prc[x is good for pc] > 1−
√

5ε. Recall that by our definition
of “good”, when x ∈ S, φ(rcx) ≥ φ(pc). We will now split the analysis of the expectation (5) into
two cases, depending on whether x belongs to S or not.

By the Schwartz-Zippel Lemma, for every x and c, we have the upper bound∣∣φ(pc)/|F| − Prs,t[rcx(s, t) = 0]
∣∣ ≤ d/|F| (6)

so that the contribution of x 6∈ S to the expectation (5) is at most
(∑

c∈F d/|F|
)

Prx[x 6∈ S] ≤
√

5εd.
We now handle the case x ∈ S. We will show that, for every x ∈ S,∑

c∈F

∣∣φ(pc)/|F| − Prs,t[rcx(s, t) = 0]
∣∣ = O(

√
εd+ δ).

Fix x ∈ S, and let T denote the set of all c ∈ F such that x is good for pc. Note that T will include
all but a

√
5ε fraction of F. We split the summation over c into the cases c ∈ T and c 6∈ T . The

contribution of the summation from the case c 6∈ T can be bounded by the quantity
√

5εd, using
(6). For the case c ∈ T , we have∑

c∈T

∣∣φ(pc)/|F| − Prs,t[rcx(s, t) = 0]
∣∣

≤
∑

c∈T

(∣∣φ(rcx)/|F| − φ(pc)/|F|
∣∣+
∣∣Prs,t[rcx(s, t) = 0]− φ(rcx)/|F|

∣∣)
≤
∑

c∈T

∣∣φ(rcx)/|F| − φ(pc)/|F|
∣∣+
∑

c∈T
O(δ/|F|) (by (2))

≤
∑

c∈T

∣∣φ(rcx)/|F| − φ(pc)/|F|
∣∣+O(δ).

Since for all c ∈ T , x is good for pc, it follows that the quantity φ(rcx)/|F| − φ(pc)/|F| is always
nonnegative, so that∑

c∈T

∣∣φ(rcx)/|F| − φ(pc)/|F|
∣∣

=
∑

c∈T

(
φ(rcx)/|F| − φ(pc)/|F|

)
=
(
1−

∑
c∈F

φ(pc)/|F|
)
−
(
1−

∑
c∈F

φ(rcx)/|F|
)

+
∑

c 6∈T

(
φ(rcx)/|F| − φ(pc)/|F|

)
≤
∣∣1−∑

c∈F
φ(pc)/|F|

∣∣+
∣∣1−∑

c∈F
φ(rcx)/|F|

∣∣+
∑

c 6∈T

∣∣φ(rcx)/|F| − φ(pc)/|F|
∣∣

≤ O(δ) +O(δ) +
√

5εd.

The last line of inequalities follows from Equations (4), (3), and (6).
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4 Combinatorial constructions

In this section we introduce combinatorial objects that will be used in the construction of hitting
set generators for polynomials. We begin by showing a connection between hitting set generators
for low degree polynomials and parity check matrices of codes.

Lemma 4.1. Let p ∈ F[y1, . . . , ym] be a polynomial of total degree at most d with M monomials,
q be a prime, and H ∈ Fn×mq be the parity check matrix of a linear code over Fq with minimum
distance 2d+ 1. Let

fj(x1, . . . , xn) =
∏n

i=1
x
Hi,j
i .

Then the polynomial r = p ◦ (f1, . . . , fm) has M monomials. In particular, if p is nonzero, then r
is nonzero.

Proof. Consider two arbitrary terms A = yα1
1 . . . yαmm and B = yβ1

1 . . . yβmm , where
∑m

i=1 αi ≤ d and∑m
i=1 βi ≤ d. Now perform the substitution yj  fj(x1, . . . , xn) and call the resulting terms A′ and

B′, respectively. Suppose that A′ = B′. Then for all 1 ≤ i ≤ n,∑n

j=1
Hi,j(αj − βj) = 0 (7)

over the integers. Let T denote the largest integer such that qT is a common factor of αj − βj over
all j. Define a vector v ∈ Fm by vj = q−T (αj − βj) (mod q). By construction, v 6= 0. Moreover,
v cannot have Hamming weight more than 2d because there can be at most d nonzero αj and d
nonzero βj . On the other hand, it follows from equation (7) that Hv = 0 over Fq. This contradicts
the fact that H is a sum-check matrix of a code of minimum distance 2d+ 1.

To finish the proof, we observe that p is a linear combination of M terms of total degree at
most d. Since any two terms of p map to distinct terms of r, the polynomial r has exactly M
monomials.

There are several known efficient constructions of matrices of codes with good minimum dis-
tance. To obtain a construction with good parameters we use BCH codes over nonbinary alphabets.
(The relevant concepts about BCH codes are described in Appendix B.) Let q be a prime between
1
2 logm and logm, and let l be the smallest integer such that N = ql ≥ m. Choose H to be the the
first m columns of the parity check matrix of the BCH code BCHq(N, 2d + 1) (see Appendix B).
By construction, H ⊆ F2dl×m

q has minimum distance at least 2d+ 1. Substituting the values for q
and l in terms of m, we obtain the following lemma:

Lemma 4.2. For every m > 0 and prime q, where 1
2 logm < q ≤ logm, there exists a par-

ity check matrix H ∈ Fn×mq of a code over Fq of minimum distance at least 2d + 1 with n =
2d(logm/ log logm+O(1)). Moreover H, is constructible in time Õ(md).

We now consider the case of generators where every element of output may depend on only a
constant number of elements in the input. This requires the construction of a parity check matrix
H with few nonzero entries in every column.

In the following Lemma, we make use of a standard construction to generate a d-wise inde-
pendent set of variables (X1, . . . , Xm) over a prime field Fq: Choose a vector (A0, . . . , Ad−1) ∈ Fdq
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uniformly at random and let Xt =
∑d−1

i=0 Ait
i. Given the values A0, . . . , Ad−1, each Xt can be

computed in time O(d log2 q) and space O(log q).5

Lemma 4.3. For every c > 0, d > 0 and n > 0, there exists a matrix H ∈ Fn×m2 with the following
properties:

1. m = Ω((e
√

2/2cd)c(n− c)c/2).

2. H is the parity check matrix of a linear code of distance at least 2d+ 1.

3. H is computable in time O
((

2m
(
n
c

))2d) and space Õ(cd log n).

4. Every column of H has exactly c ones.

Proof. Let Ww ⊆ Fn2 denote the collection of vectors of Hamming weight exactly w. Choose the
columns of H from a 2d-wise independent family over domain Wc of size

(
n
c

)
≥ m. Call the resulting

distribution on n×m matrices H. The columns of H ∼ H are distributed uniformly over all vectors
in Wc, and the number of sample points in H is

(
n
c

)2d.
Call a matrix H good if it is a parity check matrix of a code of distance at least 2d+ 1. We will

show that a random matrix H ∼ H is good with nonzero probability. To construct a good matrix,
we exhaustively search all matrices in H until we find a good one. To test if a particular matrix
H, is good, we compute all products Hx, where x ∈ Fm2 has Hamming weight between 1 and 2d,
and reject if any of these products evaluate to zero. Using standard implementations of 2d-wise
independent spaces, this can be done within the advertised time and space complexities.

Let pw denote the probability that for a particular x ∈Ww, we have Hx = 0. Then by a union
bound,

Pr
H∼H

[H is not good] ≤
∑2d

w=2

(
m

w

)
pw. (8)

We now bound pw. Consider the [n] × [w] matrix consisting of the columns of H indexed by
the one entries of x. We can interpret this matrix as the adjacency matrix of a bipartite graph G
with [n] vertices on the left, and [w] vertices on the right, each of degree c. If Hx = 0, then each
left vertex of G must have even degree. In particular, it is possible to pair up the edges of G so
that each pair of edges shares the same left vertex. Consider a particular such pairing of edges, say
(e1, f1), . . . , (ewc/2, fwc/2). We bound the probability of this pairing. Let Pi denote the event that
ei and fi share the same left vertex. Even when conditioned on P1, . . . , Pi−1, the probability of Pi
is at most 1/(n− c), so that

Pr[P1 ∧ · · · ∧ Pwc/2] ≤ 1
(n− c)wc/2

.

On the other hand, the number of possible pairings of the edges into wc pairs is (wc)!/2wc/2, so
that

pw ≤
(wc)!

[2(n− c)]wc/2
.

Substituting into (8), and using Stirling’s estimate for the factorial, we conclude that H is good
with probability less than one as long as m = Ω((e

√
2/2cd)c(n− c)c/2).

5In fact, we will need a d-wise independent set over a domain D that does not necessarily have a prime number
of elements. One way to achieve this is to embed D into some Fq, where |D| ≤ q < 2|D|, and identify each element
of D with one or two elements of Fq. Note that the distribution over D will not be uniform, but this will not make
a difference in the asymptotic calculations so for sake of clarity we ignore the issue.
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5 Hitting set generators for low-degree polynomials

By Theorem 3.1, any hitting set generator for low degree polynomials with good density gives rise
to a pseudorandom generator. We turn to investigate the construction of hitting set generators
in two models of computation: uniform arithmetic circuits, and arithmetic circuits where every
element of the output depends only on a constant number of elements in the input.

Note that the construction in Theorem 3.1 has the following property: If G is a circuit of size
s that is a hitting set generator in either of the models under consideration, then G′ is a circuit of
size s+O(m) in the same model, where m is the number of field elements output by G.

Let Fm,d denote the family of nonzero polynomials over F of degree d over m variables.

Theorem 5.1. For every integer m > 0, d > 0, fraction ε > 0, and set S ⊆ F of size at least
d2 log2m/ε, there exists a hitting set generator G : Sn → F

m of density 1 − ε for Fm,d, where
n = 2d(logm/ log logm + O(1)). Moreover, G can be represented by an arithmetic circuit over F
of size Õ(md) that is constructible in time Õ(md).

Proof. Let H be the matrix from Lemma 4.2. Let G = (G1, . . . , Gm), where Gj(x1, . . . , xn) =∏n
i=1 x

Hi,j
i . By Lemma 4.1, for every p ∈ Fm,d, the polynomial r = p◦G is nonzero. By construction,

each Gj can have degree at most nq, so r has degree at most dnq. By the Schwartz-Zippel Lemma,
it follows that r vanishes on at most an ε fraction of the points in S.

Note that the seed length of G in bits (for optimal S) is n log |S| = O(d logm log(d/ε)). We
observe that any hitting set generator for Fm,d must have seed length at least Ω(d logm), as by
interpolation we can construct a nonzero polynomial in Fm,d that vanishes on an arbitrary set of
this size.

We now turn to the construction of generators where every element in the output depends on
c elements of the input. By the same argument as in the proof of Theorem 5.1, we obtain the
following:

Theorem 5.2. For every integer m > 0, d > 0, fraction ε > 0, and set S ⊆ F of size at least
cd/ε, there exists a hitting set generator G : Sn → F

m of density at least 1 − ε for Fm,d, where
n = O(c2d2m2/c), and each output element of G depends on at most c inputs. Moreover, G can be
represented by an arithmetic circuit over F of size O(mc) that is constructible in time O(m4d).

We note the following lower bound in this model:

Theorem 5.3. For every field F and hitting set generator G : Fn → F
m of nonzero density against

linear tests where every output element depends on at most c input elements, we have m ≤
(
n
c

)
|F|c.

Proof. Suppose that m >
(
n
c

)
|F|c. Then there must exist a set D ⊆ [n] of size c such that more

than |F|c of the functions G1, . . . , Gm depend only on inputs in D. However, the space of functions
F
D → F has dimension |F|c as a linear space over F, so there must be a nontrivial linear dependence

between these functions. Contradiction.

6 Proofs of the main theorems

Proof of Theorem 1.1. We chooseG1 to be a hitting set generator of density ε2/16d2 for polynomials
of degree 3d2 in 2m − 1 variables, and G2 to be a hitting set generator of density ε2/16d2 for
polynomials of degree max(3

2d
4−2d3+ 1

2d
2, 3d2) in m−1 variables. By Theorem 5.1, we can take G1 :
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Sn/2 → F
m and G2 : Sn/2 → F

m, where S has size d10 log2m · 1/ε2, and n = O(d4 logm/ log logm).
Applying Theorem 3.1 to G1 and G2, we obtain a pseudorandom generator G : Sn × F2 → F

m for
degree d polynomials of bias O(ε+ d2|F|−1/2 + d6|F|−1. The arithmetic circuit size of G is the sum
of the circuit sizes of G1 and G2 plus O(m).

Proof of Theorem 1.2. We choose G1 to be a hitting set generator of density ε2/3d2 for polynomials
of degree 3d2 in 2m − 1 variables, and G2 to be a hitting set generator of density ε2/3d2 for
polynomials of degree max(3

2d
4 − 2d3 + 1

2d
2, 3d2) in m − 1 variables. Moreover we require that

each output of G1 and G2 depends on at most (c − 2)/3 inputs. By Theorem 5.2, we can take
G1 : Sn/2 → F

m and G2 : Sn/2 → F
m, where S has size cd6/ε2, and n = O(c2d8m6/(c−2)). Applying

Theorem 3.1 we obtain the desired pseudorandom generator G. The arithmetic circuit size follows,
and since each output of G is of the form ωis+ ηit+ νi, it depends on at most 2 + 3 · (c− 2)/3 = c
inputs.

7 Other applications

7.1 An improved hitting set generator for sparse polynomials

Klivans and Spielman [KS01] studied the problem of derandomizing polynomial identity tests for
sparse polynomials. Their main result can be interpreted as a construction of a hitting set generator
for this class of tests. Let Let FM,m,d be the family of all nonzero polynomials over a field F with
at most M monomials, m variables, and total degree d.

Theorem 7.1 ([KS01], Theorem 4). For every ε > 0, if F has size at least (md/ε)6 then there
exists a hitting set generator for FM,m,d of density 1− ε with seed length O(log(Mmd/ε)) that runs
in time polynomial in m, log d and log 1/ε.

Using Theorem 5.1, we can obtain the following improvement in the case when the number of
variables is substantially larger than the degree:

Theorem 7.2. For every ε > 0, if F has size at least (d logm/ε)O(1), then there exists a hitting
set generator for FM,m,d of density 1 − ε with seed length O(log(Md logm/ε)) that runs in time
polynomial in m, log d and log 1/ε.

Proof. Let G : Fn → F
m be the generator from Theorem 5.1. Note that if p is in FM,m,d, then p◦G

is in FM,n,d′ , where n = O(d logm/ log logm) and d′ = O(d2 log2m). Now let G′ be the generator
for FM,n,d′ from Theorem 7.1. Then the composition G ◦ G′ is a generator for DM,m,d with the
advertised parameters.

7.2 An arithmetic hitting set generator for the binary field

We show a construction of an arithmetic hitting set generator for low degree polynomials over the
binary field. Our construction is similar to those described in Section 4, but requires somewhat
stronger properties. We need the following construction of combinatorial designs used by Nisan
and Widgerson [NW94]:

Lemma 7.3. For every integer k > 0, there exists a (k log2m, log2m) combinatorial design
(S1, . . . , Sm) over the universe [n], where n = O(k2 logm). Moreover, the design can be constructed
in time mO(k2).
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We also need the following “folklore” version of the Schwartz-Zippel lemma for binary fields. A
polynomial is multilinear if the individual degree of all its variables is either zero or one.

Lemma 7.4. Let p be a nonzero multilinear polynomial in F2[x1, . . . , xn] of total degree at most d.
Then Pr[p(x1, . . . , xn) 6= 0] ≥ 2−d, for (x1, . . . , xn) chosen uniformly at random.

Given a polynomial p ∈ F2[x1, . . . , xn], the multilinearization of p is the unique multilinear
polynomial r ∈ F2[x1, . . . , xn] such that p(x1, . . . , xn) = r(x1, . . . , xn) for all (x1, . . . , xn) ∈ Fn2 . The
multilinearization of a monomial xα1

i1
. . . xαkik , where α1, . . . , αk > 0 the monomial xi1 . . . xik . Note

that multilinearization is linear with respect to addition of polynomials.
Let Fm,d denote the set of nonzero multilinear polynomials over F2 in m variables of total degree

at most d.

Theorem 7.5. There exists a hitting set generator for Fm,d of density at least m−2d2
with seed

length O(d2 logm) that is computable by an arithmetic circuit over F2 of size O(md2 logm) and
constructible in time mO(d2).

Proof. Let (S1, . . . , Sm) be the combinatorial design from Lemma 7.3 with parameter k = 2d. We
define the generator G : Fn2 → F

m
2 by

Gj(x1, . . . , xn) =
∏

i∈Sj
xi.

Given a polynomial p ∈ Fm,d in variables y1, . . . , ym, the composition p◦G is a polynomial of degree
at most 2d2 log2m over F2. Let r denote the multilinearization of p ◦ G. We argue that r must
be nonzero. For this, it is sufficient to show that any two distinct terms in p give rise to distinct
terms in r. Without loss of generality, assume that the two distinct terms in r are A = y1, . . . , yp
and B = yb+1 . . . yq, where b > 0, p ≤ d, and q − b ≤ d. Let A′ and B′ denote the terms obtained
after performing the substitution yj =

∏
i∈Sj xi.

Let S = (S2 ∪ · · · ∪Sp)∪ (Sb+1 ∪ · · · ∪Sq). We show that there exists an index k ∈ [n] such that
k ∈ S1 − S:

|S1 − S| ≥ |S1| −
∑p

i=2
|S1 − Si| −

∑q

i=b+1
|S1 − Si| ≥ 2d log2m− (d− 1) log2m− d log2m > 0.

It follows that the variable xk has degree one in the term A′, but has degree zero in the term B′.
Since this property is preserved by multilinearization, the corresponding terms in r will be distinct.

Since r(x1, . . . , xn) is nonzero and is of degree at most 2d2 log2m, by Lemma 7.4 r does not
vanish on at least a m−2d2

fraction of its inputs.
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A A technical proposition

Let P be a property of polynomials g ∈ F[s, t]. We say that P is independent of parametrization
if for any affine transformation T (s, t) = (a1s + b1t + c1, a2s + b2t + c2), ai, bi, ci ∈ F such that
a1b2 − a2b1 6= 0, P holds for g(T (s, t)) if and only if P holds for g(s, t). The following Proposition
is used in the proofs of Section 2.

Proposition A.1. Assume n ≥ 2. Let P be any property of polynomials in F[s, t] that is indepen-
dent of parametrization, and f ∈ F[x1, . . . , xn]. Suppose that the polynomial g(s, t) = f(s+ν1, ω2s+
η2t + ν2, . . . , ωns + ηnt + νn) satisfies P with probability 1 − ε over random ν1...n, ω2...n, ν2...n ∈ F.
Then

PrH∼Hn [f |H satisfies P] ≥ 1− ε− 10|F|−1.

Proof. If n = 2, then |Hn| = 1 so f itself must satisfy P. Moreover, as long as η2 6= 0, g(s, t) is the
same function as f(x1, x2) under a different parametrization. Since η2 = 0 with probability |F|−1,
g(s, t) will satisfy P with probability at least 1− |F|−1.

Now assume n > 2. Let H′n ⊆ Hn denote the collection of affine planes that are not perpendic-
ular to the vector e1 = (1, 0, . . . , 0) ∈ Fn and are not parallel to the vector f1 = (0, 1, . . . , 1) ∈ Fn.
We want to establish a correspondence between hyperplanes H ∈ H′n and parametrizations of the
type

V (s, t) = (s+ ν1, ω2s+ η2t+ ν2, . . . , ωns+ ηnt+ νn). (9)

Call a parametrization of type (9) good if (ω2, . . . , ωn) and (ν2, . . . , νn) are not constant multiples
of one another. We observe the following properties:

1. Every good parametrization of type (9) determines an affine plane in H′n.

2. Every affine plane in H′n has exactly (|F|−1)|F|3 good parametrizations of type Equation (9).
(In particular, all H ∈ H′n have the same number of good parametrizations.)

3. The probability that V (s, t) is good over a random choice of ν1...n, ω2...n, η2...n is 1−|F|−n+1−
|F|−n+2 + |F|−2n+3 ≥ 1− 2|F|−n+2.

4. The probability that a random H ∼ Hn is in H′n is at least 1− 2|F|−1. (This can be seen by
direct calculation.)
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Therefore

PrH∼Hn [f |H satisfies P] ≥ (1− 2|F|−1) PrH∼H′n [fH satisfies P] by Property 4

= (1− 2|F|−1) PrV [g(V (s, t)) satisfies P|V is good] by Property 2

≥ (1− 2|F|−1)(PrV [g(V (s, t)) satisfies P]
− PrV [V is not good])/PrV [V is good] by Bayes’ rule

≥ (1− 2|F|−1)(1− ε− 2|F|−n+2(ε+ 2|F|−n+2)) by Property 3.

≥ 1− ε− 10|F|−1.

B BCH codes

In this section we recall the definition of non-binary BCH codes through their parity check matrices,
and state certain properties that are useful for our application. The properties that we need are
standard and can be found, for example, in the book by MacWilliams and Sloane [MS77].

Let q be a prime, d, l, be positive integers, N = ql, and α a generator of the multiplicative group
F
×
N . The (primitive) BCH code BCHq(N, d) over Fq is the Fq kernel of the matrix G ∈ F(d−1)×N

N

given by Gi,j = αi(j−1). Note that the code is a linear subspace of Fq. Since the matrix G has full
rank over FN , it follows that BCHq(M,d) has minimum distance at least d over Fq. Next, we show
that the co-dimension of BCHq(M,d) over Fq is at most l(d − 1); to do so, we exhibit a specific
parity check matrix H ∈ Fl(d−1)×N

q for BCHq(N, d) of rank at least d.
We think of FN as an l-dimensional Fq-vector space by identifying each element a0 +a1α+ · · ·+

al−1α
l−1) ∈ FN with the vector (a0, . . . , al−1) ∈ FNq . Then multiplication by x ∈ Fm is a linear

map in FNq . Let Mx ∈ Fl×l be the matrix representing this linear map with respect to the standard
basis. The following lemma is easy to verify:

Lemma B.1. Let H be the matrix obtained from G by replacing the i, jth entry Gi,j with the first
column of MGi,j . Then H has rank at least d over Fl(d−1)×N

q .

For given q, l and d, the matrix H can be constructed in time Õ(Ndl3): A generator α for FN
(represented by a minimal polynomial rα) can be found in time O(m), and for every i, j, the matrix
MGi,j can be computed as the i(j − 1)-th power of Mα, which can be done in time Õ(l2).
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