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Abstract

We show that if an NP-complete problem has a non-adaptive self-corrector with respect to
any samplable distribution then coNP is contained in NP/poly and the polynomial hierarchy
collapses to the third level. Feigenbaum and Fortnow (SICOMP 22:994-1005, 1993) show the
same conclusion under the stronger assumption that an NP-complete problem has a non-adaptive
random self-reduction.

A self-corrector for a language L with respect to a distribution D is a worst-case to average-
case reduction that transforms any given algorithm that correctly decides L on most inputs
(with respect to D) into an algorithm of comparable efficiency that decides L correctly on every
input. A random self-reduction is a special case of a self-corrector where the reduction, given
an input x, is restricted to only make oracle queries that are distributed according to D. The
result of Feigenbaum and Fortnow depends essentially on the property that the distribution of
each query in a random self-reduction is independent of the input of the reduction.

Our result implies that the average-case hardness of a problem in NP or the security of a
one-way function cannot be based on the worst-case complexity of an NP-complete problem via
non-adaptive reductions (unless the polynomial hierarchy collapses).

1 Introduction

The fundamental question in the study of average-case complexity is whether there exist distri-
butional problems in NP that are intractable on average. A distributional problem in NP is a
pair (L,D), where L is a decision problem in NP, and D is a samplable distribution on instances.
We will say that such a problem is tractable on average if for every polynomial p there exists a
polynomial-time algorithm A such that for all sufficiently large n, when given a random instance of
length n from distribution D, algorithm A determines membership in L correctly with probability
at least 1− 1/p(n).
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This notion of average-case tractability is essentially equivalent to Impagliazzo’s definition of heuris-
tic polynomial-time algorithms [Imp95]. Impagliazzo observes that if every problem in distributional
NP is tractable on average, then there are no one-way functions, thus cryptography is impossible.
It is therefore generally believed that distributional NP does contain problems that are intractable
on average.

The question we consider in this paper concerns the minimal complexity assumption one needs to
make in order to guarantee that distributional NP does indeed contain a problem that is intractable
on average. Ideally, one would like to base the existence of hard on average problems (and one-way
functions) on a worst-case assumption, namely NP 6⊆ BPP. Equivalently, the question can be
formulated as follows: Is the existence of worst-case hard problems in NP sufficient to show the
existence of problems in NP that are hard on average?

In the cryptographic setting, the question of whether there are cryptosystems that are NP-hard to
break, that is, whose security can be based on the assumption that NP 6⊆ BPP, is as old as modern
cryptography itself, and it was asked by Diffie and Hellman [DH76, Section 6]. As we review below,
there is conflicting evidence about the answer to this question.

Previous work

Worst-case versus average-case in NP. Impagliazzo [Imp95] observes that we know oracles
relative to which NP 6⊆ P/poly, but there is no intractable problem in distributional NP (and
consequently, one-way functions do not exist). Therefore, any proof that NP 6⊆ BPP implies the
existence of an intractable problem in distributional NP must use a non-relativizing argument.
However, non-relativizing arguments are commonly used in lattice based cryptography to establish
connections between the worst-case and average-case hardness of certain NP problems that are
believed to be intractable (but not NP-complete).

Feigenbaum and Fortnow [FF93] consider the notion of a random self-reduction, which is a natural,
and possibly non-relativizing, way to prove that the average-case complexity of a given problem
relates to its worst-case complexity. We begin by discussing the slightly more general notion
of locally random reduction, introduced in [BFKR97] (see also the earlier works [AFK89, BF90,
FKN90]). A locally random reduction from a language L to a distributional problem (L′,D) is a
polynomial-time oracle procedure R such that RL′

solves L and, furthermore, each oracle query of
RL′

(x) is distributed according to D.1 Clearly, such a reduction converts a heuristic polynomial
time algorithm for (L′,D) (with sufficiently small error probability) into a BPP algorithm for L.
Observe that the reduction may depend on the choice of distributional problem (L′,D), so in
general this approach does not relativize. If we had a locally random reduction from, say, 3SAT
to some problem (L′,D) in distributional NP, then we would have proved that if NP 6⊆ BPP then
distributional NP contains intractable problems. A locally random reduction from L to (L′,D) is
called a random self-reduction if L = L′.

Feigenbaum and Fortnow show that if there is a non-adaptive random self-reduction from L to
(L,D) for an NP-complete language L and a samplable ensemble D, then NP ⊆ coNP/poly and
the polynomial hierarchy collapses to the third level. Their proof also establishes the slightly more

1More precisely, according to the restriction of D to inputs of length polynomially related to x (see Section 2).
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general result that if there is a non-adaptive locally random reduction from a problem L to a
problem (L′,D) in distributional NP, then L is in coNP/poly.

Random self-reductions and locally random reductions are natural notions, and they have been
used to establish the worst-case to average-case equivalence of certain PSPACE-complete and EXP-
complete problems [STV01]. Therefore, the result of Feigenbaum and Fortnow rules out a natural
and general approach to prove a statement of the form: “If NP 6⊆ BPP then distributional NP
contains intractable problems.”

Cryptography versus NP-hardness. The seminal work of Diffie and Hellman [DH76] intro-
ducing public key cryptography asked if there exists a public key encryption scheme whose hardness
can be based on an NP-complete problem. This question was seemingly answered in the affirmative
by Even and Yacobi [EY80], who devised a public key cryptosystem that is “NP-hard to break”.
Namely, they showed a reduction that transforms any adversary that “breaks” the cryptosystem
into an algorithm that solves SAT. However, the notion of “breaking the cryptosystem” in [EY80]
is a worst-case one: Specifically, it is assumed that the adversary can break the encryption for every
key. Lempel [Lem79] later showed that the same cryptosystem can in fact be broken on most keys.
Therefore, the NP hardness of breaking a cryptosystem in the worst case does not in general have
any implications for cryptographic security.

The gap between worst-case and average-case hardness is even more transparent in the case of
symmetric key cryptography, or one-way functions. It is well known that there exist “one-way
functions” that are NP-hard to invert in the worst case, but easy to invert on average. (For
instance, consider the function that maps a formula φ and an assignment a to (1, φ) if a satisfies φ
and to (0, φ) otherwise.)

As these examples show, the notion of hardness in breaking a public key cryptosystem, or inverting
a one-way function that one needs in cryptography is fundamentally an average-case notion.

Brassard [Bra79] addresses the question of the existence of public key cryptosystems that are hard to
break from a different perspective. He argues that, under some assumptions on the key-generation
algorithm and the encryption procedure, the problem of breaking the encryption is in NP ∩ coNP.
Specifically, he shows that if there is a reduction that transforms an oracle that breaks encryptions
to an algorithm for a language L, then the reduction can be used to provide NP certificates for
membership in both L and L, proving that L ∈ NP ∩ coNP. More recent work by Goldreich and
Goldwasser [GG98] reaches the same conclusion under weaker assumptions.

In the setting of symmetric key cryptography, a similar conclusion can be reached about the hard-
ness of inverting a one-way function if one makes additional assumptions about the function in
question. For instance, if the function f is a permutation, then the existence of a reduction from
any language L to an inverter for f establishes that L ∈ NP ∩ coNP. A proof for membership in
L or L consists of the transcript of all the queries made by the reduction, together with unique
preimages of the queries under f . The fact that f is a permutation guarantees that this transcript
perfectly simulates the reduction when given access to an inverting oracle for f .

These arguments explain why the hardness of breaking a large class of cryptosystems cannot be
based on the worst-case complexity of an NP complete problem (assuming NP 6= coNP). However,
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neither of them uses the fact that the reduction that transforms the adversary into an algorithm
for L is correct even if the adversary only performs its task well on average. In fact, the arguments
merely assume that the reduction behaves correctly when given oracle access to an adversary that
violates a worst-case assumption. Given the existence of public-key cryptosystems and one-way
functions that are hard to break in the worst case, one cannot expect these arguments to explain
why breaking a general one-way function or a general public key encryption scheme should be an
NP ∩ coNP problem, as experience seems to indicate, if this is indeed the case.

If we were to ever hope for such an explanation, we need a stronger notion of “NP hard to break”,
which allows for the fact that the adversary may err on some fraction of inputs. Again, what we
mean by a cryptosystem being “NP-hard to break” is that there exists a reduction that transforms
an adversary for the cryptosystem into an algorithm for SAT, but now the reduction is required to
solve SAT correctly even if the adversary sometimes outputs an incorrect answer.

This motivates the following definition of a reduction from an NP-complete problem to the problem
of inverting well on average a one-way function f : A reduction is an oracle probabilistic polynomial
time procedure R such that for some polynomial p and for every oracle A that inverts f on a
1 − 1/p(n) inputs of length n, it holds that RA is a BPP algorithm for SAT. The techniques of
Feigenbaum and Fortnow imply that if R is non-adaptive, and if all of its oracle queries are done
according to the same distribution (that depends only on the length of the input), then the existence
of such a reduction implies that the polynomial hierarchy collapses to the third level.

As we explain below, we reach the same conclusion (see Theorem 17 in Section 4) without any
assumption on the distribution of the queries made by RA, but also assuming as in [FF93] that the
queries are made non-adaptively.

Worst-case to average-case reductions within NP. The most compelling evidence that the
average-case hardness of certain problems in NP can be based on worst-case intractability assump-
tions comes from lattice based cryptography.

Ajtai [Ajt96] shows that an algorithm that solves well on average the shortest vector problem (which
is in NP) under a certain samplable distribution of instances implies an algorithm that solves, in
the worst case, an approximate version of the shortest vector problem. The latter can be seen as
an NP promise problem. If the latter problem were NP-complete, then we would have a reduction
relating the average-case hardness of a distributional problem in NP to the worst-case hardness of
an NP-complete problem. Unfortunately, the latter problem is known to be in NP ∩ coNP, and
therefore it is unlikely to be NP-hard. However, it is conceivable that improved versions of Ajtai’s
argument could show the equivalence between the average-case complexity of a distributional NP
problem and the worst-case complexity of an NP problem. Micciancio [Mic04] and Micciancio
and Regev [MR04] improve Ajtai’s reduction by showing that a good on average algorithm for the
generalized subset sum problem implies better worst-case approximation algorithms for a variety of
problems on lattices. Such approximations, however, still correspond to promise problems known
to be in NP ∩ coNP.

Average-case complexity in NP. The theory of average-case complexity was pioneered by
Levin [Lev86], who defined the notion of “efficient on average” algorithms and gave a distributional
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problem that is complete for a large subclass of distributional NP. Levin’s notion of efficient on
average algorithms is stronger than Impagliazzo’s notion of polynomial-time heuristic algorithms
that we consider here. Namely, every problem in distributional NP that admits an efficient on
average algorithm also admits an efficient heuristic algorithm.

The subclass of distributional NP problems considered by Levin imposes a severe restriction on the
distribution according to which instances of the problem are sampled. In particular, it does not
include the problem of inverting arbitrary one-way functions. In the case of a one-way function
f , the notion of “inverting f well on average” amounts to solving the search problem “Given u,
find x s.t. f(x) = u”, where u is chosen according to the distribution obtained by applying f
to the uniform distribution. In general, f may be an arbitrary polynomial-time algorithm, so it
makes sense to relax the definition so as to allow instances of L to be generated by arbitrary
polynomial-time samplers. This yields the class distributional NP (introduced by Ben-David and
others [BCGL89]) of all pairs (L,D) where L is an NP language and D is an arbitrary samplable
distribution according to which inputs for L are generated.

The class distributional NP turns out to be surprisingly robust for (randomized) heuristic algo-
rithms. In particular, there exists an NP language L such that if L is tractable on average with
respect to the uniform distribution, then every problem in NP is tractable on average with re-
spect to any samplable distribution. Moreover, the average-case algorithms for distributional NP
are “search algorithms” in the sense that they provide witnesses of membership for most of the
“yes” instances. In particular, average-case tractability of L implies the ability to efficiently invert
one-way functions on most inputs f(x), where x is chosen uniformly at random. These results
on distributional NP were established by Ben-David and others [BCGL89] and Impagliazzo and
Levin [IL90].

For an overview of these and other notions in average-case complexity, their interrelations, and
explanations of the various choices made in definitions, the reader is referred to the expository
papers by Impagliazzo [Imp95], Goldreich [Gol97], and the authors [BT05].

Our result

A worst-case to average-case reduction with parameter δ from a language L to a distributional
problem (L′,D) is a probabilistic polynomial-time oracle procedure R such that, for every oracle A
that agrees with L′ on inputs of probability mass 1 − δ according to D on each input length, RA

solves L on every input.

If L and L′ are the same language, then the reduction is called a self-corrector, a notion indepen-
dently introduced by Blum and others [BLR93] and by Lipton [Lip89] in the context of program
checking [Blu88, BK95]. As argued below, a locally random reduction is also a worst-case to
average-case reduction and a random self-reduction is also a self-corrector, but the reverse need not
be true.

In this paper we show that if there is a worst-case to average-case reduction with parameter
1/poly(n) from an NP-complete problem L to a distributional NP problem (L,D), then NP ⊆
coNP/poly and the polynomial hierarchy collapses to the third level. In particular, if an NP-
complete problem has a self-corrector with respect to a samplable distribution, then the polynomial
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hierarchy collapses to the third level.

We first prove the result for the special case in which the distribution D is uniform (Theorem 17).
Then, using reductions by Impagliazzo and Levin [IL90] and by Ben-David and others [BCGL89],
we show that the same is true even if the reduction assumes a good-on-average algorithm for the
search version of L′, and even if we measure average-case complexity for L′ with respect to an
arbitrary samplable distribution D (Theorem 20).

The generalization to arbitrary samplable distributions and to search problems also implies that
there cannot be any non-adaptive reduction from an NP-complete problem to the problem of
inverting a one way function.

Our result also rules out non-adaptive reductions from an NP-complete problem to the problem of
breaking a public-key cryptosystem. The constraint of non-adaptivity of the reduction is incompa-
rable to the constraints in the results of Goldreich and Goldwasser [GG98].

It should be noted that some of the worst-case to average-case reductions of Ajtai, Dwork, Miccian-
cio, and Regev [Ajt96, AD97, Mic04, Reg03, MR04] are adaptive. Micciancio and Regev [MR04]
observe that their reductions can be made non-adaptive with a slight loss in worst-case approxi-
mation factors.

Comparison with Feigenbaum-Fortnow [FF93]. It is easy to see that a locally random
reduction R from L to L′ that makes q queries, each of which is generated by the reduction
according to a distribution D, is also a worst-case to average-case reduction with parameter Ω(1/q)
from L to (L′,D). Indeed, if A is an oracle that has agreement, say, 1− 1/4q with L′ (as measured
by D), and we access the oracle via q queries, each distributed according to D, there is a probability
at least 3/4 that queries made to A are answered in the same way as queries made to L′.

For the result of Feigenbaum and Fortnow, it is not necessary that the distribution of each query
made by the reduction be exactly D, but it is essential that the marginal distribution of queries
made by the reduction be independent of the reduction’s input. This restriction is quite strong, and
in this sense, the result of [FF93] is extremely sensitive: If one modifies the distribution of queries
even by an exponentially small amount that depends on the input, all statistical properties of the
reduction are preserved, but one can no longer draw the conclusion of [FF93]. Our result reaches
the same conclusion as [FF93], yet allows the queries made by the reduction to depend arbitrarily
on the input.

One natural setting where the queries made by the reduction seem to essentially depend on the
input is Levin’s theory of average-case complexity. One tool for relating the average-case hardness
of two distributional problems is the “average-case to average-case reduction”. Such a reduction
from (L,D) and (L′,D′), uses an oracle that solves L′ on most inputs chosen from D′ to solve L on
most inputs according to D. Some important reductions, most notably those in [BCGL89, IL90],
choose their queries to the oracle from a distribution that depends on the input in an essential way,
making the results of [FF93] useless for their study.

The relation between locally random reductions and our notion of worst-case to average-case reduc-
tion is similar to the relation between one-round private information retrieval and locally decodable
codes [CGKS98, Tre05]. In one-round private information retrieval, a “decoder” is given oracle ac-
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cess to the encoding of a certain string, and wants to retrieve one bit of the string by making a
bounded number of queries; the restriction is that the i-th query must have a distribution inde-
pendent of the bit that the decoder is interested in. In a locally decodable code, a decoder is given
oracle access to the encoding of a certain string, and the encoding has been corrupted in a δ fraction
of places; the decoder wants to retrieve a bit of the original string by making a bounded number of
queries (with no restriction on the distribution on queries). An intermediate notion that is useful in
the study of the relation between private information retrieval and locally decodable codes is that
of a smooth decoder: Such a decoder satisfies the additional requirement that the distribution of
each query should be dominated by the uniform distribution. Similarly, in the setting of worst-case
to average-case reductions one can restrict attention to smooth reductions, where the distribution
of queries made by the reduction is dominated by the uniform distribution.

For computationally unbounded decoders, it has been shown (see [KT00, GKST02]) that uniform,
smooth, and general decoders are equivalent, but the same methods do not work in the computa-
tionally bounded setting studied in this paper. One step in our proof is, however, inspired by the
techniques used to show this equivalence.

Our proof

As in the work of Feigenbaum and Fortnow, we use the fact that problems in coNP/poly cannot be
NP-complete unless the polynomial hierarchy collapses to the third level. Our goal is to show that
if L has a 1/poly(n) worst-case to average-case reduction to a language (L′,D) in distributional
NP, then L is in NP/poly ∩ coNP/poly. In particular, if L were NP-complete, then NP would be
contained inside coNP/poly, which in particular implies the collapse of the polynomial hierarchy to
the third level. (However, the conclusion NP ⊆ coNP/poly appears weaker than the more standard
statement NP = coNP.)

Feigenbaum and Fortnow observe that NP/poly is exactly the class of languages that admit AM
protocols with polynomial length advice. Then they show L ∈ NP/poly∩coNP/poly by giving AM
protocols with advice for both L and its complement. The protocols for L and its complement are
completely analogous, so we focus on describing the protocol for L.

We begin by discussing the case of a reduction from L to (L′,D) when D is the uniform distribution.

The Feigenbaum-Fortnow protocol. Let us first briefly review the proof of Feigenbaum and
Fortnow [FF93]. Given x, a prover wants to prove that RL′

(x) accepts with high probability
(implying x ∈ L), where R makes q non-adaptive queries, each uniformly distributed. The (non-
uniform) verifier generates k independent computations of RL′

(x) and sends to the prover all the kq
queries generated in all the k runs. The prover has to provide all the answers, and certificates for
all the “yes” answers. The verifier, non-uniformly, knows the overall fraction p of queries of RL′

(x)
whose answer is “yes” (recall that we assumed that the queries of R, and thus p, is independent
of x). If k is large enough, the verifier expects the number of “yes” answers from the prover to be
concentrated around kqp, and in fact is within kqp ± O(q

√
k) with high probability. If the prover

gives fewer than kqp − O(q
√

k) “yes” answers, this provides strong evidence of cheating, and the
verifier rejects. Since a cheating prover must provide certificates for all its “yes” claims, such a
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prover can only cheat by saying “no” on a “yes” query, and cannot do so on more than O(q
√

k)
instances. If k is sufficiently larger than q, then with high probability either the verifier rejects, or
a majority of the k computations of RL′

(x) yields the correct answer, making the reduction output
“yes” and the verifier accept.

Handling Smooth Reductions: The hiding protocol. The Feigenbaum-Fortnow protocol
can be used with every oracle procedure R, provided that given x we can get a good estimate of the
average fraction px of oracle queries made by R on input x that are answered “yes” by an oracle
for L′. In general, this fraction will depend on x, so it cannot be provided as an advice to the AM
circuit certifying membership in L.

For starters, let us allow the distribution of R’s queries to depend on x, but restrict it to be “α-
smooth”: We assume that every query y of R is generated with probability at most α2−|y|. (It is
useful to think of α as constant, or at most polynomial in |y|, so that a query made by R is not
much more likely to hit any specific string than in the uniform distribution.) We devise an AM
protocol with advice in which the verifier either rejects or gets a good estimate of px. This estimate
is then fed into the Feigenbaum-Fortnow protocol to obtain an AM circuit for L.

Suppose that, given a random query y made by R(x), we could force the prover to reveal whether
or not y ∈ L′. Then by sampling enough such queries y, we can estimate px as the fraction of “yes”
queries made by the reduction. But how do we force the prover to reveal if y ∈ L′? The idea is to
hide the query y among a sequence of queries z1, . . . , zk for which we do know whether zi ∈ L′, in
such a way that the prover cannot tell where in the sequence we hid our query y. In such a case,
the prover is forced to give a correct answer for y, for if he were to cheat he wouldn’t know where
in the sequence to cheat, thus would likely be caught.

The problem is that we do not know a specific set of queries zi with the desired property. We do,
however, know that if we chose zi independently from the uniform distribution on {0, 1}|y|, then
with high probability pk±O(

√
k) of these queries will end up in L′, where p is the probability that

a uniformly random query in {0, 1}|y| is in L′. Since p depends only on the length of x but not on
x itself, it can be given to the verifier non-uniformly.

This suggests the following verifier strategy: Set k = ω(α2), generate k uniformly random queries
z1, . . . , zk of length n, hide y among z1, . . . , zk by inserting it at a random position in the sequence,
send all the queries to the prover and ask for membership in L′ together with witnesses that at
least pk −O(

√
k) queries belong to L′.

We claim that, with high probability, either the verifier rejects or the answer about membership
of y in L′ must be correct. Intuitively, a cheating prover can give at most O(

√
k) wrong answers.

The prover wants to use this power wisely and assign one of these wrong answers to the query y.
However, smoothness ensures that no matter how the prover chooses the set of O(

√
k) queries to

cheat on, it is very unlikely that the query y falls into that set.

For ease of analysis, the actual proof presented in Section 3.2 combines the step of sampling enough
ys to estimate px together with the step of hiding y among a sequence of uniform queries into a
single step.

This argument already provides an interesting generalization to [FF93]. Notice that we have not yet
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used the fact that the reduction is allowed access to any oracle that computes L′ well on average.

Handling General Reductions. We now consider the case of general reductions, allowing the
distribution of a random query on input x to depend arbitrarily on x. Observe that the hiding
protocol will, in general, fail to estimate px for this type of reduction. If a particular query y made
by the reduction is very likely (that is, it occurs with probability much greater than α2−|y|), then
it cannot be hidden in a reasonably long sequence of uniform queries.

However, suppose that the verifier had the ability to identify queries y that occur with probability
≥ α2−|y|; let us call such queries “heavy”, and the other ones “light”. The fraction of heavy queries
in the uniform distribution is at most 1/α. Suppose also that the prover answers all light queries
correctly. We can then use R to certify membership in L as follows: If the query made by R is
heavy, pretend that the oracle for R answered “no”, otherwise use the answer provided by the
prover. This process simulates exactly a run of the reduction RA, where A is an oracle that agrees
with L′ on all the light queries, and answers “no” on all the heavy queries. In particular, A agrees
with L′ on a 1−1/α fraction of inputs, so the reduction is guaranteed to return the correct answer.

In general, the verifier cannot identify which queries made by the reduction are heavy and which
are light. However, suppose the verifier knew the probability qx that a random query, on input
x, is heavy. Then, among any set of k independent queries, the verifier expects to see, with high
probability, qxk ± O(

√
k) heavy queries. Using a protocol of Goldwasser and Sipser [GS86], the

verifier can now obtain approximate AM certificates of heaviness for at least qxk −O(
√

k) queries
from the prover. This leaves at most O(

√
k) queries about whose heaviness the verifier may be

misinformed.

A verifier with access to qx can run a variant of the hiding protocol to calculate the fraction px of
“yes” instances of L′ among the light queries (treating the O(

√
k) heavy queries that “slip in the

sample” as a statistical error to this estimate), followed by a variant of the Feigenbaum-Fortnow
protocol, simulating “no” answers on all the heavy queries.

Finally, we need a protocol that helps the verifier estimate the probability qx of heavy queries. The
verifier can obtain an approximate lower bound on qx by sampling random queries and asking for
proofs that each query is heavy. To obtain an approximate upper bound on qx, the verifier uses an
“upper bound” protocol for the size of certain NP sets, due to Fortnow [For87]. The explanation
of the exact roles of these protocols in estimating qx is deferred to Section 3.1.

We observe that the generalization of the Feigenbaum-Fortnow result about locally random reduc-
tions to smooth, and then arbitrary non-adaptive reductions parallels an analogous sequence of
steps establishing the equivalence of uniform, smooth, and arbitrary decoders for locally decodable
codes.

General Distributions, Search Problems, One-Way Functions. So far we have described
our results for the case in which the distribution on inputs D is the uniform distribution. We now
consider the case where D is an arbitrary samplable distribution. Impagliazzo and Levin [IL90]
show that for every distributional NP problem (L,D) and bound δ = n−O(1) there is a non-adaptive
probabilistic polynomial time oracle algorithm R, an NP language L′, and a bound δ′ = δO(1) such
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that for every oracle A that agrees with L′ on a 1− δ′ fraction of inputs, RA solves L on a subset
of inputs of density 1− δ under the distribution D.

This means that if there were a non-adaptive worst-case to average-case reduction with parameter
1/poly(n) from a problem L to a distributional problem (L′,D), there would also be such a reduction
from L to (L′′,U), where U is the uniform distribution and L′′ is in NP. By the previously described
results, this would imply the collapse of the polynomial hierarchy.

A reduction by Ben-David and others [BCGL89] implies that for every distributional NP problem
(L,U) there is a problem L′ in NP such that an algorithm that solves the decision version of (L′,U)
on a 1− δ fraction of inputs can be modified (via a non-adaptive reduction) into an algorithm that
solves the search version of (L,U) on a 1 − δ · poly(n) fraction of input. This implies that even if
we modify the definition of worst-case to average-case reduction so that the oracle A is supposed to
solve the search version of the problem, our results still apply. In particular, for every polynomial
time computable function f , the problem of inverting f well on average is precisely the problem of
solving well on average a distributional NP search problem. Therefore our results also rule out the
possibility of basing one-way functions on NP-hardness using non-adaptive reductions.

Organization. Section 2 provides the relevant definitions of notions in average case complexity
and interactive proof systems. In Section 3 we present the protocols for estimating the fraction of
heavy queries of a reduction, the fraction of light “yes” queries of a reduction, and for simulating the
reduction, respectively. Section 4 contains the proof of our main result (Theorem 17) concerning
the average-case complexity of languages with respect to the uniform distribution. In Section 5 we
prove our result for the average-case complexity of distributional search problems (Theorem 20).

2 Preliminaries

In this section we formalize the notions from average case complexity and interactive proof systems
needed to state and prove our result on the impossibility of worst-case to average-case reductions
in NP.

For a distribution D, we use x ∼ D to denote a sample x chosen according to D. For a finite set S,
we use x ∼ S to denote a sample x chosen uniformly at random from S. For a sample x, we use
D(x) to denote the probability of x in the distribution D. For a set S, we use D(S) to denote the
probability that a random sample chosen according to D falls inside the set S.

2.1 Distributional problems and heuristic algorithms

Intuitively, we think of an algorithm A as a “good heuristic algorithm” for distributional problem
(L,D) if the set of “yes”-instances of A (which we also denote by A) and the set L are close
according to D. Formalizing this definition requires one to make choices regarding how D measures
closeness and what the threshold for closeness is.

Roughly, Levin [Lev86] considers two sets A and L to be close according to D if on a random

10



input length n, the measure of the symmetric difference A M L according to the restriction of D
on {0, 1}n is small. We will make the stronger requirement that this quantity be small for all n.
Notice that every heuristic algorithm satisfying the stronger requirement also satisfies the weaker
requirement (and therefore reductions that work for algorithms satisfying the weaker requirement
also work for algorithms satisfying the stronger requirement), so it makes our impossibility result
more general. This requirement simplifies some of the definitions, as we can now restrict our
attention to ensembles of distributions over various input lengths rather than a single distribution
over {0, 1}∗.

We now turn to the actual definitions.

Definition 1 (Samplable ensemble). An efficiently samplable ensemble of distributions is a collec-
tion D = {D1,D2, . . . }, where Dn is a distribution on {0, 1}n, for which there exists a probabilistic
polynomial-time sampling algorithm S that, on input 1n, outputs a sample from Dn.2

The uniform ensemble is the ensemble U = {U1,U2, . . . }, where Un is the uniform distribution on
{0, 1}n.

A distributional problem is a pair (L,D) where L is a language and D is an ensemble of distributions.
A distributional problem (L,D) is in the class distributional NP, denoted DistNP, if L is in NP
and D is efficiently samplable.

In this paper we study hypothetical reductions that might be used to establish average-case in-
tractability of distributional NP problems based on a worst-case assumption, such as NP 6⊆ BPP.
The notion of average-case intractability that we have in mind is the absence of good-on-average
algorithms of the following type. (The definition is in the spirit of the treatment by Impagliazzo
[Imp95].)

Definition 2 (Heuristic Polynomial Time). We say that a probabilistic polynomial time algorithm
A is a heuristic algorithm with success probability s(n) for a distributional problem (L,D) if, for
every n, Prx∼Dn [A(x) = L(x)] ≥ s(n), where the probability is taken over the sampling of x from
Dn and over the internal coin tosses of A. The class of distributional problems for which such
algorithms exist is denoted by Heurs(n)BPP.

We consider a distributional problem (L,D) to be “hard on average” if there is a polynomial p
such that (L,D) 6∈ Heur1−1/p(n)BPP. This is a fairly robust notion with respect to the choice of p:
Trevisan [Tre05] proves that there is a constant c > 0 such that for every polynomial p,

DistNP 6⊆ Heur1−1/p(n)BPP if and only if DistNP 6⊆ Heur1/2+(log n)−cBPP

Stronger collapses are known for non-uniform heuristic classes [O’D02, HVV04].

Levin’s alternative notion of an “efficient on average” algorithm [Lev86] imposes the additional
requirement that the average-case algorithm A be errorless: For every x for which A(x) 6= L(x),

2This definition restricts the strings in the support of Dn to have length exactly n. It is possible to use a more
relaxed definition in which the length of strings in the support of Dn is variable, as long as S is non-shrinking:
Namely, the length of every string in the support of Dn must be at least nε for some constant ε > 0.
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A(x) must output “fail” (with high probability over its internal coin tosses).3 Hence every efficient
on average algorithm for (L,D) is also a heuristic algorithm for (L,D), so the class of problems (in
distributional NP) that are “hard for efficient on average algorithms” is possibly larger than the
class of problems that are “hard for heuristic algorithms”. Therefore opting for “hard for heuristic
algorithms” as our notion of average-case hardness makes our impossibility result weaker, but in
fact our result holds even with respect to the notion of “hard for efficient on average algorithms”
(as explained in section 4).

For a function δ(n), two languages L and L′, and an ensemble of distributions D on inputs, we
say that L and L′ are δ-close with respect to D if for sufficiently large n, the measure of the set
Ln M L′

n according to Dn is at most δ(n). The definition of “heuristic polynomial time with success
probability s(n)” requires that A and L be (1− s(n))-close.

2.2 Worst-case to average-case reductions

A worst-case to average-case reduction is a procedure that transforms any average-case algorithm
for one problem into an algorithm that works on all inputs for another problem. The reduction
is called non-adaptive if the reduction decides on all its queries before it makes any of them. The
following definition formalizes this notion.

Definition 3. A nonadaptive worst-case to average-case randomized reduction from L to (L′,D)
with average hardness δ (in short, a δ worst-to-average reduction) is a family of polynomial size
circuits R = {Rn} such that on input x ∈ {0, 1}n and randomness r, Rn(x; r) outputs strings
y1, . . . , yk (called queries) and a circuit C (called a decider) such that for any L∗ that is δ-close to
L′ with respect to D, it holds that

Prr[C(L∗(y1), . . . , L∗(yk)) = L(x)] ≥ 2/3.

We can also think of R as a non-adaptive oracle procedure that, when provided any L∗ that is
δ-close to L′ as an oracle, agrees with L on every input (with probability at least 2/3 over its
internal coin tosses).

Notice that if there is a δ worst-to-average reduction from L to (L′,D), and L 6∈ BPP, then
(L′,D) 6∈ Heur1−δBPP. When the distribution D is uniform, we may denote the distributional
problem (L′,D) just by L′.

Remarks on the definition.

• The choice of constant 2/3 for the success probability of the reduction in the definition is
rather arbitrary. If there exists a worst-to-average reduction Rn from L to (L′,D) that
succeeds with probability 1/2 + n−c, there also exists one that succeeds with probability
1− 2−nc′

for arbitrary constants c, c′.
3Levin’s original definition [Lev86] is formulated differently from the one we give here, but Impagliazzo [Imp95]

shows that the two are essentially equivalent.
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• Without loss of generality, we may also assume that the strings y1, . . . , yk are identically
distributed. Suppose R is an arbitrary reduction R that makes k queries. We define a new
reduction R′ that randomly permutes the queries of R. Then each query of R′ is distributed
as a random query of R.

• Without loss of generality, we can fix two polynomials k(n) and m(n) such that for every n,
when given an input x of length n, the reduction makes exactly k(n)/m(n) queries of length
i for every i between 1 and m(n) (so that the total number of queries made is k(n)). This
condition guarantees that for every i between 1 and m(n), and every string y of length i, the
probability that a random query made by the reduction equals y is exactly 1/m(n) times the
probability that a random query made by the reduction equals y, conditioned on the length
of this query being i. When working with distributions over queries, it is convenient to fix
the query length; this restriction will allow us to relate statistics over queries of fixed length
to statistics over queries of arbitrary length produced by the reduction.

• We used a non-uniform definition of reductions as it gives us a more general impossibility
result. In particular, our result holds for uniform reductions.

2.3 Constant-round interactive protocols

We now discuss the types of protocols used in our proof, as well as certain extensions that will be
used as building blocks.

Constant-round interactive protocols with advice. All the protocols in this paper are
constant-round interactive protocols with polynomially long advice. An interactive protocol with
advice consists of a pair of interactive machines (P, V ), where P is a computationally unbounded
prover and V is a randomized polynomial-time verifier which receive a common input x and advice
string a. Feigenbaum and Fortnow [FF93] define the class AMpoly as the class of languages L for
which there exists a constant c, a polynomial p and an interactive protocol (P, V ) with advice such
that for every n, there exists an advice string a of length p(n) such that for every x of length n, on
input x and advice a, (P, V ) produces an output after c rounds of interaction and

• If x ∈ L, then Pr[(P, V ) accepts x with advice a] ≥ 2/3

• If x 6∈ L, then for every prover P ∗, Pr[(P ∗, V ) accepts x with advice a] ≤ 1/3.

We observe that this definition is weaker than the definition of the class AM/poly following the
Karp-Lipton notion of classes with advice, which requires that the (P, V ) be a valid constant-
round interactive protocol (possibly for some language other than L) for all possible settings of the
advice. (We note that in both cases, the advice is accessible to both the prover and the verifier.)
Even though AMpoly appears to be larger than AM/poly, they are in fact both equal to NP/poly
(cf. [FF93]). Owing to this, in our description of protocols we will not be concerned with the
behavior of the protocol when the advice is bad.

The protocol of Feigenbaum and Fortnow uses public coins. In contrast, our protocol will use
private coins. In the case of constant-round interactive protocols without advice, it is known that
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private coin protocols can be simulated by public-coin protocols [GS86]. The argument extends to
protocols with advice, and therefore we may drop the public coin requirement in the definition of
AMpoly.

The existence of AMpoly protocols for all of coNP implies a partial collapse of the polynomial
hierarchy, as was also observed in [FF93]: By the above observations, the assumption coNP ⊆
AMpoly implies coNP ⊆ NP/poly, and by a result of Yap [Yap83], this gives Σ3 = Π3.

Protocols with shared auxiliary input. When applying two protocols in sequence, the second
protocol has access to the transcript of the interaction from the first protocol. To allow access to
this transcript, we extend our definition of interactive protocol to include a shared auxiliary input.
This shared auxiliary input comes with a promise Υ, which may depend on the actual input. The
completeness and soundness conditions are required to hold for all auxiliary inputs satisfying the
promise. In the case of sequential composition of two protocols, the promise of the second protocol
includes the set of all transcripts that are not rejecting for the first protocol. The running time of
the verifier in a protocol with shared auxiliary input is measured with respect to the length of the
concatenation of the actual input and the shared auxiliary input.

Protocols with private verifier input. In a protocol with private verifier input, the verifier
is given, in addition to the input x, a private input r not known to the prover. The input r will
be a “secret” of the verifier–a random string, uniformly distributed among a range of secrets that
may depend on the input x. We represent the range of secrets by an NP-relation H: A secret r for
input x is chosen uniformly among all r such that (x; r) satisfies H.

In our application, the protocol will be applied to instances of promise problems (see [ESY84,
Gol05]) instead of languages. For this reason, we state a definition of constant-round protocols
with private verifier input for promise problems.

Definition 4. An interactive protocol with private verifier input consists of a polynomial-time
verifier V , an unbounded prover P , and an NP relation H. A promise problem Π = (ΠY ,ΠN )
admits such a protocol with completeness c and soundness s if:

1. For all x ∈ ΠY , Pr[(P, V (r))(x) accepts] ≥ c.

2. For all x ∈ ΠN and every prover P ∗, Pr[(P ∗, V (r))(x)] ≤ s.

In both cases, the randomness is taken over V and over r chosen uniformly from all strings that
satisfy (x; r) ∈ H.

Notice that this definition extends the standard notion of proof system without a private input, as
we can specialize the definition to an NP relation H that mandates a unique choice of r for every
x. The definition can be naturally extended in the case of protocols with shared auxiliary input.
For such protocols to be sequentially composable, we must require that the private input of the
verifier is independent of the shared auxiliary input, conditioned on the actual input.
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Parallel repetition of two-round protocols. Suppose we are given instances x1, . . . , xn of
promise problem Π in AMpoly. We want a AMpoly protocol that distinguishes between the case
when all xi ∈ ΠY and the case when at least one xi ∈ ΠN . A natural approach is to run n
independent instantiations of the protocol for Π in parallel, and accept if all of them accept.
Intuitively, if the protocol for Π has completeness 1 − ε and soundness δ, we expect the parallel
protocol to have completeness 1−nε and soundness δ. This worsens the completeness of the original
protocol, while leaving the soundness essentially unchanged.

One way to improve the soundness is the following. Suppose that we could settle for distinguishing
between the case when all xi ∈ ΠY and the case when xi ∈ ΠN for at least t of the xis. Intuitively,
this relaxation makes the work required of a cheating prover much more demanding: Such a prover
is now trying to convince the verifier to accept an instance in which at least t of the xis are “no”
instances of Π. We expect such a prover to have success probability at most δt.

We prove that this is indeed the case for public-coin two-round protocols (which is sufficient for
our application), even for proof systems with private verifier input. We begin by describing the
promise problem intended to be solved by parallel composition. We then define parallel composition
for two-round protocols with private verifier input, and prove that parallel composition solves the
intended problem.4

Given a promise problem Π = (ΠY ,ΠN ), we define the n-wise repetition of Π with threshold t to
be the promise problem Πn,t = (Πn,t

Y ,Πn,t
N ) as follows:

Πn,t
Y = {(x1, . . . , xn) : xi ∈ ΠY for all i}

Πn,t
N = {(x1, . . . , xn) : xi ∈ ΠN for at least t values of i.}

Suppose (P, V, H) is a k round protocol with private verifier input and with advice. We define its
n-fold parallel composition as the k round protocol (Pn, V n,Hn) with private verifier input, where

• V n is the machine that, on input (x1, . . . , xn) and private verifier input (r1, . . . , rn), simulates
n independent runs of V , where the ith run takes input xi, private verifier input ri, uses ran-
domness independent of all other runs, and responds according to the next message function
of V given the transcript of messages generated by the ith run of (P, V ) so far. At the end
of the interaction, V n accepts if the transcripts produced by all the runs are accepting.

• Pn is the machine, that, on input (x1, . . . , xn), simulates n runs of P , where the ith run takes
input xi and responds according to the next message function of P given the transcript of
messages generated by the ith run of (P, V ) so far.

• Hn is defined as follows: ((x1, . . . , xn); (r1, . . . , rn)) ∈ Hn if and only if (xi; ri) ∈ H for all
1 ≤ i ≤ n.

Lemma 5. Suppose (P, V, H) is a two-round protocol (where the first message is sent by the verifier)
with private verifier input for promise problem Π with completeness 1−ε and soundness δ. Moreover,

4Goldreich [Gol99, Appendix C.1] proves that parallel composition has the desired completeness and soundness
errors for private-coin protocols with arbitrary round complexity, but without private verifier input. His proof easily
extends to our setting, but for simplicity we present a self-contained proof here.
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suppose that the message sent by V contains all of V ’s coin tosses. Then (Pn, V n,Hn) is a protocol
for Πn,t with completeness 1− nε and soundness δt.

Proof. The completeness of (Pn, V n,Hn) follows by taking a union bound over the n runs of
(P, V, H). To argue soundness, suppose that x = (x1, . . . , xn) ∈ Πn,t

N . Without loss of generality,
assume that specifically x1, . . . , xt ∈ ΠN . For an input x and private verifier input r, define Bx,r as
the set of all messages µ sent by V on input (x, r) for which there exists a response ν that makes
V accept.

Consider an arbitrary prover P ∗ that interacts with V n. Suppose that V n receives private verifier
input r = (r1, . . . , rn), and sends the message µ = (µ1, . . . , µn). In the second round, P ∗ responds
with the message ν = (ν1, . . . , νn). Note that

Prr,µ[V n(x, r,µ,ν) accepts] ≤ Prr,µ[µi ∈ Bxi,ri for all 1 ≤ i ≤ t].

The independence of the verifier strategies on different runs implies that for every i, the event
µi ∈ Bxi,ri is independent of any function of µj , rj , for j 6= i. Therefore

Prr,µ[µi ∈ Bxi,ri for all 1 ≤ i ≤ t] =
∏t

i=1
Prri,µi [µi ∈ Bxi,ri ] ≤ δt,

by the soundness of (P, V, H) for promise problem Π.

The lemma and the proof also extend to protocols with shared auxiliary input (in addition to the
private verifier input).

2.4 Lower and upper bound protocols

We now outline two protocols, used for proving approximate bounds on the number of accepting
inputs of a circuit that will be used as components in our constructions. The lower bound protocol
of Goldwasser and Sipser [GS86] is used to prove an approximate lower bound on the number of
accepting inputs of a circuit C. The upper bound protocol of Fortnow [For87] (also used by Aiello
and H̊astad [AH91]) is used to prove an approximate upper bound on the same quantity, when
the verifier is given private access to a random accepting input of the circuit. We stress that our
version of the upper bound protocol is somewhat different from the protocols in [For87, AH91], as
for our application we need a better approximation than in the original protocols, but we can allow
for a much larger soundness error. The lower and upper bound protocols will allow the verifier to
check whether queries made by the reduction are light or heavy.

We state the completeness and soundness conditions of the protocols, and provide proof sketches
in Appendix A.2.

The Lower Bound Protocol. The lower bound protocol solves the following promise problem,
which we denote ΠLB,ε (where ε > 0):
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Inputs. (C, s), where C : {0, 1}m → {0, 1} is a circuit, 0 ≤ s ≤ 2m.

Shared auxiliary input. δ, ε > 0 (represented in unary), where δ is a parameter that controls
the completeness and soundness errors, and ε controls the precision of the lower bound.

Yes instances. (C, s) such that |C−1(1)| ≥ s.

No instances. (C, s) such that |C−1(1)| ≤ (1− ε)s.

The protocol. On input (C, s) and shared auxiliary input (δ, ε):

1 Verifier: Set k = d9/δε2e. Choose a pairwise independent hash function h : {0, 1}m → Γ at
random, where |Γ| = bs/kc, and send h to the prover.

2 Prover: Send a list r1, . . . , rl ∈ {0, 1}m, where l ≤ (1 + ε/3)k. An honest prover sends all ri

such that C(ri) = 1 and h(ri) = 0.

3 Verifier: If C(ri) 6= 1 for any i, reject. If |l − k| > εk/3, reject. If h(ri) 6= 0 for any i, reject.
Otherwise, accept.

An alternative version of this protocol that achieves somewhat better parameters appears in work
by Goldreich and others [GVW01]. The protocol presented here parallels the upper bound protocol,
described below, more closely.

Lemma 6. The lower bound protocol is a protocol for ΠLB,ε with completeness 1−δ and soundness
δ.

In our applications we will need to apply the lower bound protocol on many instances in parallel,
and be guaranteed that all runs of the protocol are correct with high probability. For this reason,
we resort to Lemma 5, observing that the lower bound protocol satisfies the hypothesis of this
lemma. Applying Lemma 5 for t = 1 and setting δ = ε/n yields a parallel lower bound protocol for
Πn,1

LB,ε with completeness 1− ε and soundness ε.5

Corollary 7 (Parallel lower bound protocol). For every n and ε > 0 there exists a constant round
protocol for Πn,1

LB,ε (with shared auxiliary input ε, represented in unary) with completeness 1− ε and
soundness ε.

The Upper Bound Protocol. The upper bound protocol solves the following promise problem,
which we denote by ΠUB,ε (where ε > 0):

Inputs. (C, s), where C : {0, 1}m → {0, 1} is a circuit, 0 ≤ s ≤ 2m.

Shared auxiliary input. δ, ε > 0 (represented in unary), where δ is a parameter that controls
the completeness error and the soundness error. In contrast to the lower bound protocol, ε controls
the precision of the protocol and also affects the soundness.

5For this setting of parameters, ε controls both the precision of the approximate lower bound and the completeness
and soundness errors. Had we wished to do so, we could have used independent parameters for the precision and
for the completeness / soundness errors, though this is not necessary for our application. In contrast, in the parallel
upper bound protocol presented below, the precision of the protocol and the soundness error are intricately related.
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Yes instances. (C, s) such that |C−1(1)| ≤ s.

No instances. (C, s) such that |C−1(1)| ≥ (1 + ε)s.

The upper bound protocol is a protocol with private verifier input: The verifier is provided a
random sample r of C−1(1), not known to the prover.

Private verifier input. A string r ∈ S. (Notice that the relation {((C, s); r) : C(r) = 1} is an
NP relation.)

The protocol. On input (C, s), shared auxiliary input (δ, ε), and private verifier input r:

1 Verifier: Set k = d9/δε2e. Choose a 3-wise independent hash function h : {0, 1}m → Γ at
random, where |Γ| = b(s− 1)/kc and send the pair (h, h(r)) to the prover.

2 Prover: Send a list r1, . . . , rl ∈ {0, 1}m, where l ≤ (1 + ε/3)k. An honest prover sends all ri

such that C(ri) = 1 and h(ri) = h(r).

3 Verifier: If C(ri) 6= 1 for any i, reject. If l > (1 + ε/3)k or r 6∈ {r1, . . . , rl}, reject. Otherwise,
accept.

Lemma 8. The upper bound protocol is a protocol with private verifier input for ΠUB,ε completeness
1− δ and soundness 1− ε/6 + δ.

Setting δ = o(ε), this yields a protocol with completeness 1− o(ε) and soundness 1−Ω(ε), giving a
narrow gap. To improve the soundness of the protocol, which is necessary for our application, we
apply parallel repetition. In particular, fixing δ = o(ε/n) and setting t = ω(1/ε) in Lemma 5 yields
a protocol for Πn,t

UB,ε with completeness 1 − o(1) and soundness (1 − ε/6 + o(ε/n))t = o(1). More
generally, we have a parallel upper bound protocol for Πn,t

UB,ε with the following parameters:

Corollary 9 (Parallel upper bound protocol). For every n and ε > 0 there exists a constant round
protocol with private verifier input (and shared auxiliary input ε, represented in unary) such that
for every t > 0 the protocol decides Πn,t

UB,ε with completeness 1− ε and soundness (1− ε/9)t.

3 The protocols

In this section we describe the constant-round interactive protocols that will constitute the building
blocks of our main protocol. The order in which the protocols are presented follows the order in
which they will be composed sequentially, which is opposite from the description in the Introduction.
Recall that we need protocols that accomplish each of the following tasks:

• For a fixed input x, estimate the probability that a random query of a given length produced
by the worst-to-average reduction on input x is light (that is, the probability of it being
produced by the reduction is smaller than a specified threshold). We consider the following
more abstract version of the problem: Given a circuit C, estimate the fraction of heavy
outputs of C. The heavy samples protocol, described in Section 3.1, solves this problem.
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• For a fixed input x, estimate the probability that a random query of a given length produced
by the worst-to-average reduction on input x is both light and a “yes” instance. Abstractly,
we can think of this problem as follows. We model the worst-to-average reduction as a sampler
circuit C and the set of “yes” instances of a given length as a nondeterministic circuit V . As
auxiliary input, we are given the fraction of accepting inputs for V as well as the probability
that a random output of C is heavy. The task is to construct a protocol that estimates the
probability that a random output of C is both light and accepting for V . The hiding protocol,
described in Section 3.2, accomplishes this task.

• For a fixed input x, simulate an “approximate membership oracle” for queries made by the
reduction on input x. This calls for a protocol for the following task: We are given a “querier”
Q, describing an instantiation of the reduction on x, and an NP verifier V for “yes” instances.
The following promise holds: When provided an oracle for the set

SQ,V = {y : V accepts y and y is a light query of Q}

Q either outputs “yes” with very high probability, or outputs “no” with very high probability
(these cases corresponding to the reduction saying “x ∈ L” and “x 6∈ L”, respectively). The
simulation protocol, described in Section 3.3, distinguishes between these two cases when
given as auxiliary inputs the fraction of heavy queries of Q and the fraction of “yes” instances
of SQ,V .

A note on approximations. The protocols described in this Section cannot be expected to
certify the exact values of the probabilities in question, but can only obtain approximations thereof.
Intuitively, we will think of a protocol as computing an approximation of p if, for arbitrary ε, the
protocol runs in time polynomial in 1/ε and distinguishes between instances whose probability is p
and instances whose probability is outside the interval (p−ε, p+ε). Indeed, additive approximations
are sufficient in all our applications.

These protocols also take as inputs (actual and auxiliary) probabilities of various events. We
make the assumption that these probabilities are specified exactly, but in fact the completeness
and soundness of the protocols are unaffected even if only approximations of these quantities were
provided. The quality of approximation required is, in all cases, a fixed inverse polynomial function
of the input length.

Statistics. We use the following formulation of the Law of Large Numbers to obtain sampling
estimates for various probabilities. For completeness we provide a proof in Appendix A.1.

Lemma 10 (Sampling bound). Let Ω be a sample space, ε, η < 1, T ⊆ Ω and D a distribution on
Ω. Suppose that S is a random sample of Ω consisting of at least 3 log(2/η)/ε3 elements chosen
independently at random from the distribution D. Then with probability at least 1− η,∣∣|T ∩ S|/|S| − D(T )

∣∣ ≤ ε.

High probability means probability 1 − o(1), where the o(·) notation is in terms of the length of
the input of the protocol.
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The notation A M B is for the symmetric difference of sets A and B. We use standard set facts
about symmetric difference.

3.1 The heavy samples protocol

In this section we describe the protocol used for estimating the fraction of heavy samples generated
by a circuit C. Recall that a string y is α-heavy for distribution D on {0, 1}m if D(y) ≥ α2−m.
Given a distribution D, the probability that a random sample of D is α-heavy is given by the
quantity

hD,α = Pry∼D[D(y) ≥ α2−m].

The problem we are considering is the following: Given a circuit C : {0, 1}n → {0, 1}m, a threshold
α, a heaviness estimate p, and an error parameter ε, we want a protocol that accepts when p =
hDC ,α and rejects when |p − hDC ,α| > ε. Here, as throughout the section, DC denotes the output
distribution of the circuit C.

A natural approach is to estimate the unknown hDC ,α by sampling: Suppose that for a random
sample y ∼ DC we could decide with good probability if the sample was α-heavy or α-light. Then,
given k = O(1/ε3) samples y1, . . . , yk generated by running C on independent inputs, we could
estimate hDC ,α as the fraction of samples that are α-heavy, and sampling bounds would guarantee
that the answer is correct with good probability.

However, in general we have no way of efficiently deciding whether a sample y ∼ DC is heavy or
light. However, we have at our disposal the upper and lower bound protocols of Section 2.4. For
each sample yi, the verifier first asks the prover to say if sample yi is α-heavy or α-light. Then the
prover is asked to prove the claims for the heavy samples using the lower bound protocol, and the
claims for the light samples using the upper bound protocol. In both cases, the claims concern the
size of the set C−1(yi), which is the restriction of an NP set on {0, 1}m.

There are several difficulties with implementing this approach. First, the upper bound protocol
requires the verifier to have a secret, random preimage ri of the set C−1(yi). Fortunately, the
verifier obtains this secret for free in the course of generating yi. When generating yi, the verifier
in fact chooses a random ri ∈ {0, 1}n and sets yi = C(ri), so this ri (which is kept hidden from the
prover) is indeed a random pre-image of yi.

Another difficulty is that the upper bound protocol guarantees an ε deviation from the true value
of C−1(yi) only with probability 1−O(ε). Therefore the prover has a good chance of getting away
with a false upper bound claim on any particular yi. But how many times can the prover play this
trick? If the prover decides to submit t false upper bound claims, its success probability quickly
falls to (1 − O(ε))t (see Corollary 7), so for t = ω(1/ε) the risk of detecting a false upper bound
claim becomes quite high for the prover. On the other hand, O(1/ε) false upper bound claims
make no real difference for the verifier. In the end, the verifier uses these claims to compute its
estimate of hDC ,α, so any set of O(1/ε) false claims among k samples will only change its estimate
by O(k/ε) = O(ε2), much less than the tolerated deviation ε.

The final difficulty stems from the fact that both the upper and lower bound protocols are approx-
imate. To illustrate this issue, consider the case of a circuit C for which the distribution DC is
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close to α-flat: Namely, every y ∈ {0, 1}m has probability either 0 or (1± ε)α2−m under DC . Now
for every sample yi of the verifier, it happens that yi is approximately both α-heavy and α-light.
Hence the verifier has no soundness guarantee about the prover’s claims for any yi.

This issue appears quite difficult to resolve. We sidestep it by weakening the requirement on the
protocol. Instead of requiring soundness for all α, we settle for soundness for a random choice of
α. This avoids the “flatness” issue, because an almost flat distribution is very unlikely to be close
to α-flat for a random α. More generally, given any distribution DC , if α is assigned a random
value among any set of 1/ε values that are spaced by a factor of at least 1 + 2ε apart, then the
expected probability mass under DC of samples that are both (1− ε)α-heavy and (1+ ε)α-light can
be at most ε. Therefore, the fraction of samples for which the verifier fails to obtain a soundness
guarantee cannot be much more than O(ε).

Choosing a heaviness threshold. We formalize the last observation in the following claim.
The claim is also used in Sections 3.2 and 3.3. For every integer α0 and fraction δ > 0, define the
distribution:

Aα0,δ = Uniform distribution on {α0(1 + 3δ)i : 0 ≤ i ≤ 1/δ}. (1)

Observe that every value in Aα0,δ is in the range [α0, e
3 ·α0]. Since the intervals ((1− δ)α, (1+ δ)α)

are pairwise disjoint over the various α ∈ Aα0,δ, the following result holds:

Claim 11 (Choosing a random threshold). For every α0 > 0 and 0 < δ < 1/3, and every distribu-
tion D on {0, 1}m,

Eα∼Aα0,δ

[
Pry∼D[D(y) ∈ ((1− δ)α2−m, (1 + δ)α2−m)]

]
≤ δ.

3.1.1 The protocol

We formalize the notion of a “protocol that works for a random heaviness threshold α” by defining
a family of problems {ΠHEAV Y,α}, parametrized by the threshold α, and requiring that the protocol
be complete and sound for a random problem in this family.

Inputs. (C, p, ε), where C : {0, 1}n → {0, 1}m is a circuit, and p ∈ [0, 1] is a probability, and ε > 0
is an error parameter represented in unary.

Shared auxiliary input. (α, δ), where α is a threshold parameter represented in unary and
0 < δ < 1/3 is an error parameter.

Yes instances. (C, p, ε) such that hDC ,α = p.

No instances. (C, p, ε) such that |hDC ,α − p| > ε.

The heavy samples protocol. On input (C, p, ε) and shared auxiliary inputs α and δ:

1. Verifier: Set k = d3 · 163 log(2/δ)/δ3e. Choose r1, . . . , rk ∼ {0, 1}n. Compute yj = C(rj).
Send y1, . . . , yk to the prover.

2. Prover: Send a partition (H,L) of [k]. An honest prover sets H = {i : DC(yi) ≥ α2−m} and
L = {i : DC(yi) < α2−m}.
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3. Verifier and Prover: Run the parallel upper bound protocol (see Section 2.4) with auxiliary
input (ri : i ∈ L) with shared auxiliary input (error parameter) δ for the claim “|C−1(yi)| <
α2n−m for all i ∈ L.”

Run the parallel lower bound protocol (see Section 2.4) with shared auxiliary input (error
parameter) δ for the claim “|C−1(yi)| ≥ α2n−m for all i ∈ H.”

Accept iff
∣∣|H|/k − p

∣∣ ≤ ε/2.

3.1.2 Analysis of the protocol

Lemma 12. For every integer α0 and fractions ε, δ, with probability 1 − O(δ/ε) over α chosen
uniformly from Aα0,δ, the heavy samples protocol (with input (C, p, ε) and auxiliary input (α, δ)
satisfying the promise) is a protocol for ΠHEAV Y,α with completeness 1−O(δ) and soundness O(δ).

Proof. We denote by H ′ and L′ the set of α-heavy and α-light samples, respectively:

H ′ = {i : DC(yi) ≥ α2−m} and L′ = {i : DC(yi) < α2−m}.

The honest prover always chooses H = H ′ and L = L′.

By the sampling bound, for every prover strategy, with probability 1− O(δ) over the randomness
of the verifier, the fraction of α-heavy samples among y1, . . . , yk should closely approximate hDC ,α,
and in particular, ∣∣|H ′|/k − hDC ,α

∣∣ ≤ ε/6. (2)

Completeness. Completeness (for arbitrary α) follows from high probability estimate (2), together
with completeness of the parallel lower bound protocol for Π|L|,1

LB,δ (see Corollary 7) and completeness

of the parallel upper bound protocol for Π|H|,·
UB,δ (see Corollary 9).

Soundness. Fix an α ∼ Aα0,δ such that

Pry∼DC

[
DC(y) ∈ ((1− δ)α2−m, (1 + δ)α2−m)

]
≤ ε/16.

By Claim 11 and Markov’s inequality, this holds with probability 1 − O(δ/ε) for a random α in
Aα0,δ. For such a choice of α, let B denote the set of samples that are both (1 − δ)α-heavy and
(1 + δ)α-light, that is

B = {i : DC(yi) ∈ ((1− δ)α2−m, (1 + δ)α2−m)}.

By the sampling bound, the number of samples in B is not much larger than ε/16 with high
probability over the randomness of the verifier. Indeed,

Pr
[
|B| > εk/8

]
= Pr

[
|B|/k − ε/16 > ε/16

]
≤ δ.

Now fix a prover strategy for which the verifier accepts instance (C, p, ε) with probability ω(δ).
Then there exists a setting of the verifier’s randomness for which

∣∣|H|/k − p
∣∣ ≤ ε/2 (by the last

step of the verifier),
∣∣|H ′|/k − hDC ,α

∣∣ ≤ ε/6 (by high probability estimate (2)), and the following
conditions hold:
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• For t = dlog(1/δ)/δe all but t + εk/8 samples in L are α-light, that is, |L − L′| ≤ t + εk/8.
Indeed, this is an event of probability 1 − O(δ) over the randomness of the verifier: By
soundness of the parallel upper bound protocol for Π|L|,t

UB,δ, fewer than t of the samples in L
are (1+δ)α-heavy. Moreover, the number of samples in L that are α-heavy but (1+δ)α-light
is upper bounded by the size of B. It follows that with probability 1−O(δ), |L−L′| ≤ t+εk/8.

• All but εk/8 samples in H are α-heavy, that is, |H − H ′| ≤ εk/8. This is also an event of
probability 1 − O(δ) over the randomness of the verifier: By soundness of the parallel lower
bound Protocol for Π|H|,1

LB,δ, none of the samples in H are (1−δ)α-light. Moreover, the number
of samples in H that are α-light but (1 − δ)α-heavy is upper bounded by the size of B. It
follows that with probability 1−O(δ), |H −H ′| ≤ εk/8.

It follows that∣∣|H| − |H ′|
∣∣ ≤ |H −H ′|+ |H ′ −H| = |H −H ′|+ |L− L′| ≤ t + εk/4 < εk/3.

Therefore,

|hDC ,α − p| ≤
∣∣hDC ,α − |H ′|/k

∣∣ +
∣∣|H ′|/k − |H|/k

∣∣ +
∣∣|H|/k − p

∣∣ < ε/6 + ε/3 + ε/2 = ε.

So, (C, p, ε) is a “yes” instance of ΠHEAV Y ,α.

3.2 The hiding protocol

In this section we describe the protocol for estimating the probability that a random sample gen-
erated by a circuit C : {0, 1}n → {0, 1}m is both a light sample and a “yes” instance of some NP
language V . Let us denote by DC the distribution of outputs of the circuit C and by U the uniform
distribution on {0, 1}m. We assume that we are given as advice the probability pY that a random
sample in {0, 1}m, is a “yes” instance of V .

For starters, let us assume that we are guaranteed that the distribution DC is α-smooth (for some
reasonably small α), that is, no output of C is α-heavy. Let us consider the following experiment.
We choose among distributions DC and U by flipping a coin biased towards DC with probability
b (the value of interest is around b = 1/α), then generate a sample y according to either DC or U
depending on the outcome of the coin. We then give the sample y to the prover and ask which
distribution it came from.

The best strategy for the prover to guess the origin of the sample is a maximum likelihood test:
Compute the ratio DC(y)/U(y), and declare ”DC” if the ratio exceeds 1/b, and “U” otherwise.
However, when b < 1/α, the maximum likelihood test will always guess that the sample came from
U . This effectively gives the verifier the ability to hide samples from DC among samples from U .

Suppose now that the verifier wants to determine membership in V ∩ {0, 1}m for a random sample
from DC , but it has only the ability to determine membership for random samples from U . The
verifier can then use the prover as follows: Generate ω(α) samples by choosing each one indepen-
dently. The sample size is large enough so that at least one of the samples, call it z, will originate
from DC . The prover is then asked to determine membership in V for all the samples. The verifier
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then checks if the prover determined membership in V correctly for all the samples coming from
U . If this is the case, then chances are that the prover also determined membership in V correctly
for z, since this sample was hidden among all the other ones.

In our case, the verifier has no way of determining membership in V on samples from U . Instead,
it only knows that the fraction of samples from U that fall in V should be roughly pY . Recall that
the verifier is interested in determining the fraction gDC ,V of samples from DC that fall in V . It
is tempting to try the following protocol: The verifier and prover run the hiding procedure on a
sufficiently large sample. The verifier then checks that the fraction of samples originating from U
claimed to be in V by the prover is within a small enough deviation δ of pY . If this is the case, the
verifier estimates gDC ,V as the fraction of samples originating from DC that are claimed to be in V
by the prover.

It is not difficult to see that this protocol is not sound: A prover can “convince” the verifier, for
instance, that gDC ,V = pY . To do so, for each sample the prover answers independently “yes” with
probability pY and “no” with probability 1− pY about the membership of this sample in V .

However, since V is an NP set, the verifier can impose an additional requirement: Every time the
prover makes a “yes” claim for a sample, an NP certificate for membership in V of the sample must
be provided. The prover’s cheating power now becomes one-sided as it can no longer provide a
“yes” answer for a sample that is not in V ; the only way the prover can now cheat is by providing
“no” answers for samples in V . However, if the prover supplies such false answers on more than
an O(δ) fraction of the samples (where δ > 0 is an error parameter), it is likely that most of
these falsely answered samples originated from U , because the samples originating from U comprise
an overwhelming majority of all the samples. Therefore it is likely that the fraction of samples
from U claimed “yes” by the prover is smaller than pY − δ. On the other hand, statistically it is
very unlikely that fewer than a pY − δ fraction of samples from U are in V . This prevents the
prover from providing false answers on more than an O(δ) fraction of all the samples. Since the
number of samples from DC is roughly a b-fraction of the total number of samples, the prover in
particular cannot provide false answers on more than an O(δ/b) fraction of samples originating
from DC . Therefore a cheating prover is unlikely to skew the verifier’s estimate of gDC ,V by more
than O(δ/b). Setting δ = εb allows the verifier to obtain an additive ε approximation of gDC ,V in
time polynomial in 1/ε, α, and the sizes of C and V .

Handling the heavy samples. Notice that if we drop the smoothness restriction on DC , this
argument fails because very heavy samples cannot be effectively hidden among uniform samples.
However, our goal is to merely estimate the probability that a sample from DC is both in V
and light. To do so, we run the protocol as for smooth distributions, initially ignoring the heavy
samples. The soundness of that protocol still shows that the prover must have answered most of
the light samples from DC correctly. What remains to be done is to weed out the heavy samples.
By the protocol from Section 3.1, the verifier can estimate the fraction pH of heavy samples. (To
avoid duplication, we assume the protocol here is given pH as auxiliary input.) At this point, the
verifier reveals its sample to the prover, and asks the prover to give lower bound proofs for a pH − ε
fraction of samples from DC . The prover’s cheating power here is also one-sided: By soundness
of the parallel lower bound protocol, the prover cannot claim any of the light samples as heavy,
so it can only cheat by claiming that some heavy samples are light. However, since the prover is
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required to provide lower bound proofs for a pH − ε fraction of samples from DC , and the number
of truly heavy samples from DC is likely to be upper bounded by pH + ε, the prover cannot cheat
on more than an O(ε) fraction of the samples from DC . Therefore a cheating prover cannot skew
the verifier’s estimate of gDC ,V by more than an additive term of O(ε).

We encounter the same issue regarding the choice of α as in the protocol for heavy samples: If too
many samples from DC have probability about α, the lower bound protocol provides no soundness
guarantee. As in Section 3.1, we sidestep this problem by choosing a random α and arguing
soundness with high probability over α.

3.2.1 The protocol

We give a protocol for the following family of promise problems, which we denote by {ΠHIDE,α}.

Inputs. (C, V, p, ε), where C : {0, 1}n → {0, 1}m is a circuit, V : {0, 1}m × {0, 1}l → {0, 1} is a
nondeterministic circuit,6 p ∈ [0, 1] is a probability, and ε > 0 is an error parameter represented in
unary.

Shared auxiliary input. (α, δ, pY , pH), where α > 0 is a threshold integer represented in unary,
0 < δ < 1/3 is an error parameter represented in unary, and pY , pH satisfy:

pY = Pry∼U [y ∈ V ] and |pH − p′H | < ε/32, (3)

where p′H = Pry∼DC
[DC(y) ≥ α2−m].

Yes instances. (C, V, p, ε) such that p = gDC ,V,α, where

gDC ,V,α = Pry∼DC
[DC(y) < α2−m and y ∈ V ].

No instances. (C, V, p, ε) such that |p− gDC ,V,α| > ε.

The hiding protocol. On input (C, V, p, ε) and auxiliary input (α, δ, pY , pH):

1. Verifier: Set b = δ/α and k = d6 · 323 log(2/δ)/(bε)3e. Choose a set TDC
⊆ [k] by assigning

each element of [k] to TDC
independently with probability b. Let TU = [k]− TDC

.

Choose strings y1, . . . , yk ∈ {0, 1}m as follows. If j ∈ TDC
, choose yj ∼ DC . If j ∈ TU , choose

yj ∼ U . Send the sequence y1, . . . , yk to the prover.

2. Prover: Send sets Y, H ⊆ [k] and strings (wj : j ∈ Y ) to the prover. An honest prover sends

(a) Y as the set of all j such that yj ∈ V ,

(b) H as the set of all j such that yj is α-heavy for DC , and

(c) wj such that V (yj ;wj) accepts for all j ∈ Y .

3. Verifier: Reject under any of the following circumstances:
6A nondeterministic circuit V computes a relation over {0, 1}m×{0, 1}l, and we say y ∈ {0, 1}m is accepted by V

if there exists a w ∈ {0, 1}l such that V (y; w) accepts. Abusing notation, we also write V for the set of all y accepted
by V .
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(a) (Witness checks) V (yj ;wj) does not accept for some j ∈ Y .

(b) (Frequency of “yes” samples in U)
∣∣|Y ∩ TU |/|TU | − pY

∣∣ ≥ εb/32.

(c) (Frequency of heavy samples in DC)
∣∣|H ∩ TDC

|/|TDC
| − pH

∣∣ ≥ ε/16.

(with Prover) Run the parallel lower bound Protocol with shared auxiliary input (error pa-
rameter) δ for the claim “|C−1(yj)| ≥ α2n−m for all j ∈ H ∩ TDC

.”

Accept iff ∣∣|Y ∩H ∩ TDC
|/|TDC

| − p
∣∣ < ε/4. (4)

Remark. The parameter b needs to satisfy two constraints. It has to ensure that the α-light
queries are hidden well (as a choice of probability for membership in T ) and also to guarantee that
the fraction of “yes” samples in TU is very close to pU—not only within O(ε), but within O(bε).
This is necessary because TDC

is smaller than TU by a factor of b, so to obtain an O(ε) deviation
bound for the fraction of light “yes” queries in TDC

, a stronger O(bε) deviation bound must be
assumed for the fraction of “yes” queries in TU .

3.2.2 Analysis of the protocol

Lemma 13. For every integer α0 and fractions ε, δ, with probability 1 − O(δ/ε) over α chosen
uniformly from Aα0,δ, the hiding protocol (with input (C, V, p, ε) and auxiliary input (α, δ, pY , pH)
satisfying the promise) is a protocol for ΠHEAV Y,α with completeness 1−O(δ) and soundness O(δ).

Proof. We denote by Y ′ and H ′ the set of actual “yes” samples and the set of actual heavy samples,
respectively:

Y ′ = {j : yj ∈ V } and H ′ = {j : DC(yj) ≥ α2−m}.

An honest prover always chooses Y = Y ′ and H = H ′.

The sampling bound implies that, for any fixed prover strategy, all of the following events hold
with probability 1−O(δ) over the randomness of the verifier:

• The number of samples in TDC
is large:

|TDC
| > bk/2 ≥ 3 · 323 log(2/δ)/ε3. (5)

• The number of samples in TU is large:

|TU | > (1− b− ε)k. (6)

• About a pY fraction of samples in TU are “yes” samples:∣∣|Y ′ ∩ TU |/|TU | − pY

∣∣ < εb/32. (7)

• About a pH fraction of samples in TDC
are heavy samples:∣∣|H ′ ∩ TDC
|/|TDC

| − p′H
∣∣ < ε/32. (8)
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• About a gDC ,V,α fraction of samples in TDC
are light “yes” samples:∣∣|Y ′ ∩H

′ ∩ TDC
|/|TDC

| − gDC ,V,α

∣∣ < ε/4. (9)

Completeness. Completeness (for arbitrary α) follows from high probability estimates (7), (8)

and (9), promise (3), and completeness of the parallel lower bound protocol for Π
|H∩TDC

|,1
LB,δ .

Soundness. Fix an α ∼ Aα0,δ such that

Pry∼DC

[
DC(y) ∈ ((1− δ)α2−m, (1 + δ)α2−m)

]
≤ ε/32.

By Claim 11 and Markov’s inequality, this holds with probability 1 − O(δ/ε) for a random α in
Aα0,δ. For such a choice of α, with probability 1 − O(δ) over the randomness of the verifier, the
number of samples in TDC

that are both (1 − δ)α-heavy and α-light is at most ε|TDC
|/16. (This

follows from the sampling bound and high probability estimate (5).)

Now fix a prover strategy for which the verifier accepts instance (C, V, p, ε) with probability ω(δ).
The analysis will be split into the following two parts:

• Show that the fraction of samples in TDC
that were claimed both “yes” and “light” by the

prover is within O(ε) of the fraction of truly light samples that were claimed “yes” by the
prover. More generally, we show that for any set of samples I ⊆ TDC

, the fraction of samples
in I that are claimed heavy by the prover is within O(ε) of the fraction of truly heavy samples
in I. This will be shown in Claim 14.

• Show that if the fraction of false “no” claims for samples in TU is small, then the fraction of
false “no” claims for light samples in TDC

is small. This will be shown in Claim 15, which
formalizes the hiding property of the protocol, and contains the main idea of the soundness
analysis.

Observe that step 3(a) of the hiding protocol ensures Y ⊆ Y ′ whenever the verifier accepts. Let
Y − = Y ′ − Y .

Claim 14 (Heavy samples). With probability 1 − O(δ) over the randomness of the verifier, if the
verifier accepts then for every set I ⊆ TDC

,
∣∣|I ∩H| − |I ∩H

′|
∣∣ ≤ ε|TDC

|/4.

Claim 15 (Hiding Property). With probability 1−O(δ) over the randomness of the verifier, |Y −∩
TU | > 1

2 |Y
− ∩H

′|.

We give the proofs of both these claims at the end of the Section. Let us see first how these claims
imply soundness. By a union bound, there exists an accepting transcript for the verifier where high
probability estimates (5), (7), and (9) hold, and the properties in Claim 14 and Claim 15 both
hold. Fix such an accepting transcript.
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By the accepting condition (4) and high probability estimate (9),

|p− gDC ,V,α| < ε/4 + ε/4 +
∣∣∣∣ |Y ∩H ∩ TDC

|
|TDC

|
− |Y ′ ∩H

′ ∩ TDC
|

|TDC
|

∣∣∣∣ by (4) and (9)

= ε/4 + ε/4 +
∣∣∣∣ |Y ∩H ∩ TDC

|
|TDC

|
−

(
|Y ∩H

′ ∩ TDC
|

|TDC
|

+
|Y − ∩H

′ ∩ TDC
|

|TDC
|

)∣∣∣∣
≤ ε/4 + ε/4 +

∣∣∣∣ |Y ∩H ∩ TDC
|

|TDC
|

− |Y ∩H
′ ∩ TDC

|
|TDC

|

∣∣∣∣ +
|Y − ∩H

′ ∩ TDC
|

|TDC
|

≤ ε/4 + ε/4 + ε/4 +
|Y − ∩H

′ ∩ TDC
|

|TDC
|

by Claim 14.

We now apply the hiding property to bound the last term. First,

|Y − ∩ TU |
|TU |

=
|Y ′ ∩ TU |
|TU |

− |Y ∩ TU |
|TU |

=
(
|Y ′ ∩ TU |
|TU |

− pY

)
+

(
pY − |Y ∩ TU |

|TU |

)
< εb/16,

by high probability estimate (7) and step 3(b) of the verifier. Now, using the hiding property and
high probability estimate (5),

|Y − ∩H
′ ∩ TDC

|
|TDC

|
≤ |Y − ∩H

′|
|TDC

|
< 2 · |Y

− ∩ TU |
|TDC

|
< 2 · εbk/16

bk/2
= ε/4.

It follows that |p− gDC ,V,α| < ε, so (C, V, p, ε) is a yes instance of ΠHIDE,α.

Proof of Claim 14. For ease of notation, let G = H ∩ TDC
and G′ = H ′ ∩ TDC

. Denote by G and
G
′ the complements of G and G′ in TDC

, respectively.

Fix a transcript of the verifier for which high probability estimate (8) holds, none of the samples
in TDC

∩H are (1− δ)α-light, and the number of samples whose weight is between (1− δ)α and α

in G is at most ε|TDC
|/16. By soundness of the parallel lower bound protocol for Π|G|,1

LB,δ, Claim 11,
and the sampling bound, all these events hold with probability 1−O(δ).

Suppose the verifier accepts. Since none of the samples in G are (1− δ)α-light and the number of
samples whose weight is between (1− δ)α and α in G is at most ε|TDC

|/16, it follows that

|G−G′|/|TDC
| < ε/16.

On the other hand, step 3(c) of the verifier, promise (3), and high probability estimate (8) give∣∣|G| − |G′|
∣∣/|TDC

| ≤
∣∣|G|/|TDC

| − pH

∣∣ + |pH − p′H |+
∣∣p′H − |G′|/|TDC

|
∣∣ < ε/8.

The last two equations imply that the sets G and G′ cannot differ on all but a few elements.
Therefore, G and G

′ must also be very close, and so must be I ∩G and I ∩G
′.

The rest are calculations formalizing these claims. First, |G′ −G| must also be small because∣∣|G′| − |G|
∣∣ =

∣∣|G′ −G| − |G−G′|
∣∣ ≥ |G′ −G| − |G−G′|
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so that |G′ −G|/|TDC
| < 3ε/16. It follows that∣∣|I ∩G| − |I ∩G

′|
∣∣ ≤ ∣∣|I ∩G| − |I ∩G ∩G

′|
∣∣ + |I ∩ (G′ −G)|

= |I ∩ (G−G
′)|+ |I ∩ (G′ −G)|

≤ |G−G
′|+ |G′ −G|

≤ ε|TDC
|/4.

Proof of Claim 15. We will, in fact, reach the stronger conclusion

|Y − ∩H
′ ∩ TU | > 1

2 |Y
− ∩H

′|

For every sample j ∈ Y − ∩H
′, that is, every light sample for which the prover made a false “no”

claim, consider the event “j ∈ TDC
” from the point of view of the prover. For a fixed prover

strategy, the first message of the verifier completely determines the set Y − ∩ H
′. First, we show

that for any first message y = (y1, . . . , yk) of the verifier, the probability of each event “j ∈ TDC
”

for j ∈ Y − ∩H
′ (over the randomness of the verifier’s first message) is less than any constant:

Pr[j ∈ TDC
| y] = Pr[j ∈ TDC

| yj ] by independence of samples

=
Pr[yj | j ∈ TDC

] Pr[j ∈ TDC
]

Pr[yj ]

≤ Pr[yj | j ∈ TDC
] Pr[j ∈ TDC

]
Pr[yj | j ∈ TU ] Pr[j ∈ TU ]

≤ (α2−m) · b
2−m · (1− b)

by lightness

≤ 2δ by choice of b.

For fixed y, the quantity |Y − ∩ H
′ ∩ TDC

| is a sum of indicator random variables for the events
“j ∈ TDC

”, one for each j ∈ Y − ∩H
′, so it follows that

E
[
|Y − ∩H

′ ∩ TDC
| | y

]
=

∑
j∈Y −∩H

′ Pr[j ∈ TDC
| y] ≤ 2δ · |Y − ∩H

′|.

by Markov’s inequality, we have that

Pr
[
|Y − ∩H

′ ∩ TDC
| > 1

2 |Y
− ∩H

′| | y
]

< 4δ.

therefore
Pr

[
|Y − ∩H

′ ∩ TU | ≤ 1
2 |Y

− ∩H
′| | y

]
< 4δ.

The claim follows by taking expectation over y.

3.3 Simulating the reduction

In this section we describe the protocol that simulates a querier circuit Q (describing an instantiation
of the worst-to-average reduction on a particular input) querying an average-case membership oracle
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for some NP set V . Let us assume that all the queries made by Q are identically distributed, and
denote by DQ the distribution of a single query. The average-case membership oracle is for the set

S = {y ∈ {0, 1}∗ : y ∈ V and DQ(y) ≤ α2−|y|}.

Recall that if Q describes an instantiation of a worst-to-average reduction from some language L
to V , distinguishing between the cases when Q accepts most of its inputs and when Q rejects most
of its inputs allows us to determine membership in L.

We assume that the protocol is given as advice the probability pH that a random query of Q is
α-heavy, and the probability pS that a random query of Q is in S. In reality, the protocol is only
given approximations of these values, but for the sake of simplicity we ignore the distinction in
this discussion. Suppose that Q on input r ∈ {0, 1}n, generates k queries y1, . . . , yk and a circuit
C : {0, 1}k → {0, 1}. Moreover, Q satisfies the promise that C(S(y1), . . . , S(yk)) either accepts or
rejects with probability 1− η for some η > 0.

Let us first consider the case when the distribution DQ is α-smooth, that is, all queries are α-light.
In this case, S = V and pH = 0, and the protocol of Feigenbaum and Fortnow can be used directly,
as the advice pS gives the probability that a random query generated by Q is a “yes” query, which is
the advice needed for the Feigenbaum-Fortnow protocol. Let us recall how this protocol works. The
verifier generates l = d24 · (k/η)3 log(2k/δ)e (where δ > 0 is an error parameter) random strings
r1, . . . , rl, sends these strings to the prover, and asks the prover to simulate the computation of
Q(ri) with oracle S for every i. To certify that most of the simulations are correct, the prover
provides, with every “yes” query made in the simulations, an NP witness (for V ) for this query.
With high probability, for all query indices j ∈ [k], among the jth queries made by Q, (pS ± η/k)l
of these queries must be “yes” instances of V , so the verifier can ask to see at least pSlk − ηl
“yes” answers without affecting completeness. But no prover can now make more than ηl false
“no” claims, so if the verifier outputs the outcome of a random simulation, it will be correct with
probability 1− η.

For a general distribution DQ, the difficulty is that the prover can no longer certify membership in
S as in the Feigenbaum-Fortnow protocol, as S is not an NP-set.7 Instead of certifying membership
in S directly, the verifier will first approximately determine which of its queries are α-heavy. To do
so, the verifier uses the fact that heaviness is a certifiable property, thus limiting the cheating power
of the prover: Statistically, the fraction of heavy queries is within pH ± η/k with high probability,
and the verifier asks the prover to give proofs of heaviness (using the lower bound protocol) for at
least pHkl− ηl of its queries. Since the prover’s cheating power is one-sided (the prover is likely to
be caught cheating if it claims that a light query is heavy), it can fool the verifier about heaviness
on at most 2ηl queries.

Once the verifier knows approximately which queries are α-heavy, it can ask the prover to reveal
which queries are in V among the ones that are α-light: For each query that the verifier thinks is
α-light, the prover is asked to determine membership in V , and provide a certificate in case of a
“yes” answer. Statistically, the fraction of queries that are light and in V is within pS ± η/k with

7In fact, if S were defined as the set of y such that y ∈ V or y is α-heavy, then it would have been an AM set
(almost, save the fact that heaviness is an approximate AM property). This provides an alternate way of proving the
Main Theorem: Modify the hiding protocol to calculate the fraction of samples that are either “yes” or heavy, then
simulate the reduction using the Feigenbaum-Fortnow protocol.
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high probability, and the verifier asks to see “yes” certificates for at least a pSkl − ηl queries that
it thinks are α-light. If the set of queries that the verifier thinks are α-light coincided exactly with
the set of truly α-light queries, the prover would not be able to provide more than 2ηl false answers
about membership in V among the α-light queries. In general these two sets will not coincide
exactly. However, the number of elements on which they differ is at most 2ηl, so that the total
number of truly α-light queries on which the prover can cheat about membership in V is still O(ηl).

It follows that for a random i ∈ [l], the verifier can correctly simulate membership in S with
probability 1−O(δ + η).

Regarding the choice of α, we encounter the same issue as in Sections 3.1 and 3.2: If too many
queries have probability about α, the lower bound protocol provides no soundness guarantee. Again,
we sidestep this issue by arguing completeness and soundness for a random α.

3.3.1 The protocol

We give a protocol for the following family of promise problems, which we denote by {ΠSIM,α}.

Inputs. (Q,V, η), where V is a nondeterministic polynomial-time machine, Q : {0, 1}n → {0, 1}poly(n)

is a querier circuit producing k queries for the set

S = SDQ,V,α = {y ∈ {0, 1}∗ : V accepts y and DQ(y) < α2−|y|},

and η > 0 is an error parameter.

Shared auxiliary input. (α, δ, pH , pS), where α is a threshold parameter represented in unary,
0 < δ < 1/3 is an error parameter represented in unary, and pS , pH satisfy:

|pH − p′H | < η/2k and |pS − p′S | < η/2k, (10)

where p′H = Pry∼DQ
[DQ(y) ≥ α2−|y|] and p′S = Pry∼DQ

[y ∈ S].

Yes instances. (Q,V, η) such that Prr[QS(r) accepts] > 1− η/2.

No instances. (Q,V, η) such that Prr[QS(r) accepts] < η/2.

The simulation protocol. On input (Q,V ), and auxiliary input (α, δ, pH , pS):

1. Verifier: Set l = d24 · (k/η)3 log(2k/δ)e. Choose l random strings r1, . . . , rl ∈ {0, 1}n and
send them to the prover. Denote the jth query of Q(ri) by yij .

2. Prover: Send sets Y, H ⊆ [l] × [k] and strings (wij : (i, j) ∈ Y ) to the prover. An honest
prover sends:

(a) Y as the set of all (i, j) such that yij ∈ V ,

(b) H as the set of all (i, j) such that yij is α-heavy for DQ, and

(c) wij such that V (yij ;wij) accepts for all (i, j) ∈ Y .

3. Verifier: Reject under any of the following circumstances:
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(a) (Witness checks) V (yij ;wij) does not accept for some (i, j) ∈ Y .

(b) (Frequency of heavy samples)
∣∣|H|/kl − pH

∣∣ > η/k.

(c) (Frequency of light “yes” samples)
∣∣|Y ∩H|/kl − pS

∣∣ > η/k.

(with Prover) Run the parallel lower bound protocol with shared auxiliary input (error pa-
rameter) δ for the claim:

|{r : The first query of Q(r) is yij}| > α2n−|yij | for all (i, j) ∈ H.

Choose a random i ∈ [l]. Accept if the decider of Q(ri) accepts the input (a1, . . . , ak), where
aj = “yes” if (i, j) ∈ Y ∩H, and aj = “no” otherwise.

3.3.2 Analysis of the protocol

Lemma 16. For every integer α0, querier circuit Q that produces k queries, and fractions η, δ,
with probability 1 − O(δk/η) over α chosen uniformly from Aα0,δ, the hiding protocol (with input
(Q,V, η) and auxiliary input (α, δ, pH , pS) satisfying the promise) is a protocol for ΠSIM,α with
completeness 1−O(δ + η) and soundness O(δ + η).

Proof. We denote by H ′ and Y ′ the set of actual heavy samples, and the set of actual “yes” samples,
respectively:

H ′ = {(i, j) : DQ(yij) ≥ α2−|yij |} and Y ′ = {(i, j) : yij ∈ V }.

The honest prover always chooses H = H ′ and Y = Y ′.

First, we observe the following high probability estimates over the randomness of the verifier (for
any prover strategy), which follow directly from the sampling bound:

(Q,V, η) is a yes instance =⇒ Pr
[
|{i : QS(ri) accepts}| > (1− η)l

]
= 1−O(δ) (11)

(Q,V, η) is a no instance =⇒ Pr
[
|{i : QS(ri) accepts}| < ηl

]
= 1−O(δ). (12)

Let T denote an arbitrary fixed (that is, independent of both the verifier’s randomness and the
prover’s strategy) subset of {0, 1}∗. The key observation of Feigenbaum and Fortnow is that for
any T , with probability 1−O(δ) over the randomness of the verifier, the fraction of queries yij that
fall inside T is |T |/kl ± η/k, even though there are dependencies among the queries. To see this,
divide the queries into k sets, where the jth set consists of queries q1j , . . . , qlj . Within each set, the
queries are independent, so by the choice of l = d24 · (k/η)3 log(2k/δ)e and by the sampling bound,
the fraction of queries in the jth set that fall inside T is |T |/kl± η/k with probability 1−O(δ/k).
By a union bound over j, it follows that with probability 1−O(δ) the total fraction of queries yij

that fall inside T is within η/k of |T |/kl.

Specifically, in the case when T is the set of α-heavy queries, we obtain that with probability
1−O(δ) over the randomness of the verifier, it holds that∣∣|H ′|/kl − pH

∣∣ < η/2k. (13)
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When T is the set of α-light queries that are in V , again with probability 1 − O(δ) over the
randomness of the verifier, it holds that∣∣|Y ′ ∩H

′|/kl − pS

∣∣ < η/2k. (14)

Completeness. Completeness (for arbitrary α) follows from high probability estimates (11), (13),
(14), promise (10), and completeness of the parallel lower bound protocol for the promise problem
Π|H|,1

LB,δ.

Soundness. Fix an α ∼ Aα0,δ such that

Pry∼DQ

[
DQ(y) ∈ ((1− δ)α2−|y|, (1 + δ)α2−|y|)

]
≤ η/2k.

By Claim 11 and Markov’s inequality, this holds with probability 1 − 2δk/η for a random α in
Aα0,δ. For such a choice of α, it follows from the sampling bound that with probability 1 − O(δ)
over the randomness of the verifier, the number of queries that are both (1− δ)α-heavy and α-light
is at most ηl.

Fix a prover strategy for which the verifier accepts instance (Q,V, η) with probability ω(δ) + 11η.
We will show that at least a 11η fraction of the transcripts are accepting, satisfy high probability
estimate (12), and have the property that the prover is honest on all but at most 10ηl answers
provided in step 2 of the protocol: Namely, they satisfy the condition

|(Y ∩H) M (Y ′ ∩H
′)| < 10ηl. (15)

Now consider all prefixes of transcripts consisting of the prover-verifier interaction before the ver-
ifier’s choice of index i in step 3. There must exist at least one such prefix that satisfies estimate
(12) and condition (15), and for which at least an 11η fraction of choices for i yield accepting
transcripts. For this prefix, condition (15) implies that for at least an 1− 10η fraction of indices i,
the verifier correctly simulates the computation QS(ri) using the claims received from the prover
in step 2. Therefore, for at least an η fraction of indices i, the transcript resulting from this choice
of i is accepting. By condition (12), it follows that (Q,V, η) must be a “yes” instance.

We now show that at least an 11η fraction of transcripts are accepting, satisfy high probability
estimate (12), and satisfy condition (15). For an accepting transcript, step 3(a) of the verifier
guarantees that Y ⊆ Y ′. Let Y − = Y ′− Y . If H were equal to H

′ with high probability, we would
have (Y ∩H) M (Y ′ ∩H

′) = Y − ∩H
′, so the claim would follow from the verifier’s step 3(c) and

estimates (12) and (14). The only complication is that H and H
′ are not equal (and the difference

between them can be two-sided), but the set difference is small: |H M H ′| ≤ 4ηl for a 1 − O(δ)
fraction of transcripts because with probability 1−O(δ) each,

• By soundness of the parallel lower bound protocol for Π|H|,1
LB,δ, none of the samples in H are

(1 − δ)α-light. Also, the number of samples whose weight is between (1 − δ)α and α is at
most ηl, so it follows that |H −H ′| ≤ ηl.

• Step 3(b) of the verifier, promise (10), and high probability estimate (13) give∣∣|H| − |H ′|
∣∣ ≤ ∣∣|H| − pHkl

∣∣ + |pH − p′H |kl +
∣∣p′Hkl − |H ′|

∣∣ < 2ηl.
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Then |H ′ −H| ≤ 3ηl because∣∣|H ′| − |H|
∣∣ =

∣∣|H ′ −H| − |H −H ′|
∣∣ ≥ |H ′ −H| − |H −H ′|.

It follows that
|H M H ′| = |H −H ′|+ |H ′ −H| ≤ 4ηl. (16)

By a union bound, at least an 11η fraction of transcripts are accepting, satisfy high probability
estimates (12), (14), and condition (16). For such transcripts, we have∣∣(Y ∩H) M (Y ′ ∩H

′)
∣∣ =

∣∣(Y ∩H) M ((Y ∩H
′) M (Y − ∩H

′))
∣∣

=
∣∣(Y ∩ (H M H

′)) M (Y − ∩H
′)
∣∣

≤
∣∣H M H

′∣∣ + |Y − ∩H
′|

≤ 4ηl + |Y − ∩H
′|.

The last line follows from the fact that the symmetric difference stays the same if the sets are
complemented. Therefore,

|Y − ∩H
′| ≤

∣∣|Y − ∩H
′|+ (|Y ∩H

′| − |Y ∩H|)
∣∣ +

∣∣|Y ∩H
′| − |Y ∩H|

∣∣
≤

∣∣|Y ′ ∩H
′| − |Y ∩H|

∣∣ +
∣∣(Y ∩H

′) M (Y ∩H)
∣∣

=
∣∣|Y ′ ∩H

′| − |Y ∩H|
∣∣ +

∣∣Y ∩ (H ′
M H)

∣∣
≤

(∣∣|Y ′ ∩H
′| − p′Skl

∣∣ + |p′S − pS |kl +
∣∣pSkl − |Y ∩H|

∣∣) + |H M H ′|
< (ηl/2 + ηl/2 + ηl) + 4ηl. by (14), (10), verifier step 3(c), and (16)

so that |(Y ∩H) M (Y ′ ∩H
′)| < 4ηl + 6ηl = 10ηl.

4 Main theorem and proof

Theorem 17 (Main Theorem). For any two languages L and L′ such that L′ ∈ NP and every
constant c, if there is a n−c non-adaptive worst-to-average reduction from L to L′, then L ∈
NP/poly ∩ coNP/poly.

In particular, if L were hard for NP, then coNP ⊆ NP/poly, therefore Σ3 = Π3.

Proof. Fix an arbitrarily small constant η > 0. We will assume that there exist polynomials
k(n) and m(n) such that for every n and every input x of length n, the reduction makes exactly
k(n)/m(n) queries of every length between 1 and m(n), so that the total number of queries made
by the reduction is k(n). We will also assume that the queries made by the reduction are identically
distributed, and that (when provided access to an average-case oracle) the reduction either accepts
or rejects with probability at least 1− η/2. In Section 2.2 we explained why all these assumptions
can be made without loss of generality.
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Observe that if there is a n−c worst-to-average reduction from L to L′, then there is also a worst-
to-average reduction from L to L′, so it suffices to prove that L ∈ NP/poly. We describe an AM
protocol for L with advice (in which completeness and soundness only hold when the advice is
correct) and private coins with completeness 1 − O(η) and soundness O(η). By the remarks in
Section 2.3, the existence of such a protocol for L shows that L ∈ NP/poly.

Let Rn denote the circuit computing the worst-to-average reduction from L to L′ on inputs of
length n. Let V be a non-deterministic machine for L′. Set α0 = n−c.

Input. A string x of length n.

Advice. For every 1 ≤ i ≤ m(n), the probability pY,i = Pry∼{0,1}i [y ∈ L′], and the circuit Rn.

Let Q be the circuit obtained by hard-wiring the input x to Rn. Thus Q takes as input a random
string r and produces as output k(n) queries and a decider circuit. For every 1 ≤ i ≤ m(n), let
Ci denote the circuit that generates a random query of Q of length i: The circuit Ci simulates
the circuit Q, then uses additional randomness to select uniformly one of the m(n) outputs of Q
of length i. Let DCi be the distribution of a sample of Ci, and DQ be the distribution of the first
query of Q. Finally, let Vi be the nondeterministic circuit describing the computation of ML′ on
an input of length i.

The protocol.

1. Verifier: Set the error parameters δ, ε1 and ε2 so that δ = min(ε1/m(n), 1/3), ε1 = ε2/32,
and ε2 = η/2k(n). Choose a random α from the distribution Aα0,δ (see (1)). Send α to the
prover.

2. Prover: For every 1 ≤ i ≤ m(n), send two probabilities hDCi
,α and gDCi

,V,α to the verifier.
An honest prover sends

hDCi
,α = Pry∼DCi

[DCi(y) ≥ α2−i] and gDCi
,V,α = Pry∼DCi

[DCi(y) < α2−i and y ∈ V ].

3. Verifier and Prover: For every 1 ≤ i ≤ m(n), run (in parallel) the heavy samples protocol
(see Section 3.1) on input (Ci, hDCi

,α, ε1) and shared auxiliary input (α, δ).

For every 1 ≤ i ≤ m(n), run (in parallel) the hiding protocol (see Section 3.2) on input
(Ci, Vi, gDCi

,Vi,α, ε2) and shared auxiliary input (α, δ, pY,i, hDCi
,α).

4. Verifier: Let

pH =
∑m(n)

i=1

1
m(n)

· hDCi
,α and pS =

∑m(n)

i=1

1
m(n)

· gDCi
,V,α.

5. Verifier and Prover: Run the simulation protocol (see Section 3.3) on input (Q,ML′ , η) and
shared auxiliary input (α, δ, pH , pS).

Observe that when the prover is honest, the probability pH is exactly the probability that a random
query of Q is α-heavy regardless of its length. Conversely, if pH deviates from the probability that
a random query of Q is α-heavy by more than ε, it must be that at least one of the claims hDCi

,α
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deviates from the value Pry∼DCi
[DCi(y) ≥ α2−i]. Similar considerations apply to the probability

pY .

Analysis of the protocol. The protocol intends to simulate a run of the reduction R when given
oracle access to the set L∗

α for some α, where

L∗
α = {y ∈ {0, 1}∗ : y ∈ L′ and DQ(y) < α2−|y|}

Observe that for every α ∈ Aα0,δ, the languages L′ and L∗
α are 1/α0-close: The distance between

L′ and L∗
α equals the measure of the set of α-heavy samples for DQ under the uniform distribution.

Since the number of α-heavy samples of DQ of length i cannot exceed α−1 · 2−i, the two sets are
1/α ≤ 1/α0-close under the uniform distribution.

Observe that our choice of parameters guarantees that for a random choice of α ∼ Aα0,δ, with
probability 1−O(η) over the choice of α, all runs of the heavy samples protocol, the hiding protocol,
and the query simulation protocol satisfy the completeness and soundness conditions guaranteed by
Lemmas 12, 13, and 16. For such a choice of α, completeness and soundness of the protocol follow
by inspection. The completeness error is O(η), which we obtain by adding the completeness errors
of all the component protocols. The soundness error is also O(η), which we obtain by observing
that parallel composition does not increase the soundness error (see Section 2.3), and adding the
soundness errors from steps 3 and 5 of the protocol.

Remarks.

• If the worst-to-average reduction were uniform, the proof of Theorem 17 actually gives the
stronger conclusion L ∈ AMlog. This requires small modification to the protocol: Instead of
requiring that the protocol be given as advice the values pY,i for all i between 1 and m(n),
we only ask that the advice consist of the average pY =

∑m(n)
i=1 pY,i/m(n), which can be

represented using O(log n) bits. As a preliminary step of the modified protocol, the prover
sends claims for the actual values pY,i, and the verifier checks that pY is the average of these
values. To check that these claims are correct (within an arbitrarily small additive term ε),
for each i, the verifier generates ω(log(m(n))/ε3) uniformly random samples of length i and
asks the prover to provide certificates for membership in V for at least a pY,i − ε fraction
of them. An honest prover can provide sufficiently many certificates with high probability,
and the power of the cheating prover is one-sided: Such a prover cannot understate any pY,i

by more than 2ε, so to preserve the average pY it cannot overstate any pY,i by more than
2εm(n). Choosing ε small enough provides the verifier with sufficiently good approximations
of the values pY,i.

• The condition L′ ∈ NP can be weakened to L′ ∈ NP/poly, as the advice for the verifier of L′

can be incorporated as advice to the protocol.

• The conclusion of the theorem holds even under Levin’s notion of hardness for efficient on
average algorithms. This notion makes the additional requirement that L∗ be an “errorless”
approximation of L in the proof of Theorem 17: That is, L∗ now takes values in {0, 1, “fail”}
and it is required that if L∗(x) 6= L′(x), then L∗(x) = “fail”. Accommodating this change
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requires merely a slight modification of the simulation protocol: Instead of simulating answers
to heavy queries by “no”, the modified protocol simulates answers to heavy queries by “fail”.

5 Search problems and samplable distributions

In this section, we generalize our results to reductions from worst-case hard languages to average-
case search problems (instead of languages) whose average-case complexity is measured with respect
to arbitrary samplable distributions (instead of the uniform distribution).

Observe that if a decision problem L in NP is hard on average with respect to some distribution D,
then the search version of L is also hard with respect to D. However, the converse is not evident.
Thus even though Theorem 17 shows that non-adaptive worst-case to average-case reductions from
an NP-hard problem to decision problems in NP are unlikely to exist, it is conceivable that reduc-
tions to search problems in NP are possible. In this section we rule out this possibility, showing that
reductions to arbitrary search problems in distributional NP are no more powerful than reductions
to decision problems in NP with respect to the uniform distribution.

The idea of the proof is to show that if there exists a worst-to-average reduction from some language
L to a search problem in distributional NP, then this reduction can be composed with known reduc-
tions from average-case complexity of Impagliazzo and Levin [IL90] and Ben-David et al. [BCGL89]
to obtain a worst-to-average reduction from L to some language L′ with respect to the uniform
distribution, thus reducing this to the special case studied in Theorem 17. A crucial property for
our purpose of the reductions in [BCGL89, IL90], which is implicit in those works, is that both
reductions are non-adaptive.

We begin by defining the type of reduction under consideration, as well as the types of reductions
implicit in [BCGL89, IL90] that will be used in the proof of the main theorem of this section.

5.1 Average-case reductions for search problems

The notion of a “worst-case to average-case reduction” can be generalized in several ways. Such
generalizations are needed in order to extend our impossibility result for worst-case to average-case
reductions to the case when the average-case problem is a distributional search problem. To obtain
this result, we will need to compose worst-to-average reductions with average-case reductions.

We begin with the notion of a heuristic NP-search algorithm that not only works well on average,
but also provides witnesses for “yes” instances.

Let V be an NP-relation. We denote by LV the NP-language corresponding to V , i.e., LV (x) = 1
iff there exists a w such that V (x;w) = 1. A family of random functions Fn : {0, 1}n → {0, 1}m is
a δ-approximate witness oracle for V with respect to the ensemble of distributions D if for all n,8

Prx∼D,F [V (x;F|x|(x)) = LV (x)] > 1− δ.

8Technically, a witness oracle is an ensemble of distributions over function families {Fn}, but to simplify notation
we will identify samples from this ensemble with the ensemble itself.
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We will omit the subscript of F when it is implicitly determined by the input length. Note that
the definition implies the existence of a set S of measure D(S) = 1− 3δ such that all x ∈ S,

PrF [V (x;F|x|(x)) = LV (x)] > 2/3.

Intuitively, S is the set of inputs where the oracle has a good chance of producing a witness for the
input, when such a witness exists. As usual, the constant 2/3 is arbitrary, since if one has access
to F , it can be queried k times independently in parallel to obtain a good witness with probability
1− 1/3k.

Just as languages in NP represent decision problems, witness oracles represent search problems.
For example, inverting a one-way function f : {0, 1}n → {0, 1}n on a 1 − δ fraction of inputs
amounts to finding an algorithm A : {0, 1}n → {0, 1}n that is δ-approximate for the relation
V (y;x) ⇐⇒ y = f(x) with respect to the distribution f(Un).

Using witness oracles, we can formalize the notion of nonadaptive reductions between search prob-
lems, as well as reductions from search to decision problems. Let us focus on the case of a reduction
between two search problems (V,D) and (V ′,D′). As in the case of languages, we want the prop-
erty that the reduction transforms any heuristic algorithm for (V ′,D′) into a heuristic algorithm
for (V,D). Moreover, if x ∈ LV , we want that the reduction, on most inputs x ∼ D, recovers a
witness for x based on the answers provided by the witness oracle for V ′.

Definition 18 (Reduction between search problems). Let V, V ′ be NP relations and D,D′ be
polynomial-time samplable distribution ensembles. A δ-to-δ′ search-to-search reduction for search
problems from (V,D) to (V ′,D′) is a family of polynomial-size circuits R = {Rn} such that on
input x ∈ {0, 1}n, randomness r, Rn(x; r) outputs strings y1, . . . , yk and a circuit C such that for
any witness oracle F ∗ that is δ′-approximate for V ′ with respect to D′, it holds that

V (x,C(F ∗(y1), . . . , F ∗(yk))) = LV (x)

with probability 1− δ over the choice of x ∼ D, F ∗, and the randomness used by the reduction.

This definition subsumes the case of a worst-to-average reduction: A δ′ worst-to-average reduction
is simply a 0-to-δ′ average-to-average reduction. The other type of reduction used in the analysis—
the search-to-decision reduction—is formalized in a similar way:

Definition 19 (Search-to-decision reduction). Let V be an NP relation, L′ be an NP language, and
D,D′ be polynomial-time samplable distribution ensembles. A δ-to-δ′ search-to-decision reduction
for search problems from (V,D) to (L′,D′) is a family of polynomial-size circuits R = {Rn} such
that on input x ∈ {0, 1}n, randomness r, Rn(x; r) outputs strings y1, . . . , yk and a circuit C such
that for any L∗ that is δ′-close to L′ with respect to D′, it holds that

V (x,C(L∗(y1), . . . , L∗(yk))) = LV (x)

with probability 1− δ over the choice of x ∼ D and the randomness used by the reduction.

5.2 Worst-case to average-case reductions to distributional search problems

We now state the main result of this section.
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Theorem 20. Let L be a language, V ′ be an NP-relation, D′ be an arbitrary polynomial-time
samplable ensemble of distributions, and c be a constant. If there is a non-adaptive n−c worst-to-
average reduction from L to (V ′,D′), then L ∈ NP/poly ∩ coNP/poly.

To understand the meaning of Theorem 20, consider a polynomial time computable function f
and a samplable ensemble of inputs D = {Dn}, and suppose that we want to prove that f is a
one-way function with respect to the distribution D. (That is, for a random x ∼ Dn, it is hard on
average to find a preimage of f(x).) We may set our aim low, and only try to prove that f is just
infinitely often a weak one-way function. This means that there is a polynomial p such that, for
every polynomial time inverter A, the computation A(f(x)) fails with probability at least 1/p(n)
to output a preimage of f(x), where the probability is over the coin tosses of A and the sampling
of x from Dn, and the statement is true for infinitely many n. We could try to provide evidence for
the hardness of f by giving a reduction showing that an adversary that inverts A with probability
better than 1 − 1/p(n) on all input lengths would imply a BPP algorithm for a presumably hard
language L. Theorem 20 implies that if such a reduction is non-adaptive, then L ∈ coNP/poly, and
if L were NP-hard we would have a collapse of the polynomial hierarchy. Specifically, in order to
apply Theorem 20 to our setting, consider the NP relation V ′ made of pairs (f(x), x), and define the
distribution D′ as the ensemble {f(x)} when x is sampled from D. Then solving the search problem
of V ′ on a random instance of D′ is the same as inverting f(x) on a random x taken from D. A
non-adaptive reduction of a decision problem L to such a problem implies that L ∈ coNP/poly.

Theorem 20 is an immediate consequence of Theorem 17 and the following two lemmas:

Lemma 21. For every δ = δ(n) and NP-relation V ⊆ ∪n{0, 1}n × {0, 1}m(n) there exists an
NP-language L′ for which there is a O(δ(m(n))2)-to-δ average-to-average reduction from (V,U) to
(L′,U).

Lemma 22. For every δ = δ(n), NP-relation V and polynomial-time samplable ensemble of dis-
tributions D there exists a constant c and an NP-relation V ′ for which there is a O(δnc)-to-δ
average-to-average reduction from (V,D) to (V ′,U).

Analogues of Lemmas 21 and 22 are known in the context of the distributional hardness of NP-
problems. A variant of Lemma 21 appears Ben-David et al. [BCGL89], while a variant of Lemma 22
was proved by Impagliazzo and Levin [IL90]. Our proofs are in essence a recasting of these argu-
ments in the formalism of nonadaptive average-to-average reductions. These proofs are presented
in Appendix A.3 and Appendix A.4, respectively.
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A Appendix

A.1 Additive bounds for random sampling

Proof of Lemma 10. Let N = |S| and p = D(T ). We use the following form of the Chernoff bound
(see [MR95, Section 4.1]):

Pr[|T ∩ S| < (1− ξ)Np] < exp(−ξ2Np/2), for ξ < 1

and

Pr[|T ∩ S| > (1 + ξ)Np] <

{
(4/e)−(1+ξ)Np, for ξ > 1,

exp(−ξ2Np/3), for ξ ≤ 1.
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If p < ε, the lower bound holds trivially, and for the upper bound we set ξ = ε/p > 1 to obtain

Pr[|T ∩ S| > (p + ε)N ] < (4/e)−(p+ε)N < η.

If p ≥ ε, we set ξ = ε to obtain:

Pr[|T ∩ S| 6∈ (1± ε)Np] < 2 exp(−ε2Np/3) ≤ 2 exp(−ε3N/3) < η.

A.2 Proof sketches for the lower and upper bound protocols

Proof Sketch for Lemma 6. Let S = C−1(1). For r ∈ S, let Ir be an indicator for the event
h(r) = 0, and let R = h−1(0), so that |R| =

∑
r∈S Ir. By the pairwise independence of h, we have

E[|R|] = |S|k/s, Var[|R|] ≤ |S|k/s, so by Chebyshev’s inequality

Pr[|R| 6∈ (1± ε/3)|S|k/s] ≤ 9
ε2
· s

|S|k

The bounds now follow by direct calculation.

Proof Sketch for Lemma 8. Let S = C−1(1). Fix r and let S′ = S − {r}, k′ = |S′|/|Γ|, R =
h−1(h(r)), R′ = R − {r}. For every r′ ∈ S′, let Ir′ be an indicator for the event r′ ∈ R′, so that
|R′| =

∑
r′∈S′ Ir′ . By the 3-wise independence of h, the Ir′ are pairwise independent conditioned

on h(r), so that E[|R′|] = k′, Var[|R′|] = k′(1−1/|Γ|) < k′ and by Chebyshev’s inequality, for every
ξ > 0:

Pr[|R′| 6∈ (1± ξ)k′] < 1/ξ2k′.

Suppose |S| ≤ s. Without loss of generality we may assume |S| = s, since for larger values of s the
acceptance probability may only increase. In this case k′ = k, so that

Pr[|R| > (1 + ε/3)k] = Pr[|R′| ≥ (1 + ε/3)k] < 9/ε2k.

Given that |R| ≤ (1 + ε/3)k, the prover can list all elements of R, so that R = {r1, . . . , rl} and
l ≤ (1 + ε/3)k. In particular, this ensures that r ∈ R and the verifier accepts.

Now suppose |S| ≥ (1 + ε)s, so that k′ > (1 + ε)k. Then

Pr[|R′| < (1 + ε/2)k] < Pr
[
|R′| < 1 + ε/2

1 + ε
k′

]
< Pr[|R′| < (1− ε/3)k′] < 9/ε2k′ < 9/ε2k.

Given that |R| > (1 + ε/2)k, what is the best strategy for a prover to make the verifier accept?
Conditioned on (h, h(r)), r is uniformly distributed in R, so the best the prover can do is set
l = (1 + ε/3)k and pick {r1, . . . , rl} to be an arbitrary subset of R. In this case,

Pr[r ∈ {r1, . . . , rl}] = l/|R| < (1 + ε/3)k
(1 + ε/2)k

< 1− ε/6.
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A.3 Average-case reductions from decision to search problems

Proof of Lemma 21. As in [BCGL89], we first reduce the search problem V to a search problem
with a unique witness, then encode the bits of the witness in the language L′. The first step is
based on the hashing argument of Valiant and Vazirani [VV86]. The reduction, as described below,
only succeeds with probability 1/16, but this can be amplified to 2/3 by applying the reduction
three times.

The inputs of the language L′ are of the form (x, k, j, h), where x is an instance of LV , k and j are
integers between 0 and m(|x|), and h is a pairwise independent hash function mapping |x| bits to
k bits (padded appropriately so the length of (x, k, j, h) is a fixed polynomial of |x| only). Let wi

denote the ith bit of a string w. We define

(x, k, j, h) ∈ L′ if there exists a w of length m(|x|) for which h(w) = 0 and wi = 1.

It is immediate that L′ ∈ NP.

The reduction works as follows: On input x ∈ {0, 1}n, choose a random h uniformly at random
and generate the queries qkj = (x, k, j, h) for all 1 ≤ k ≤ m and 1 ≤ j ≤ m. Let akj ∈ {0, 1} denote
the claimed answer to query qkj and wk be the concatenation ak1 . . . akm. The decider looks for an
index k such that wk is a witness for x for all 1 ≤ j ≤ m and outputs wk; if no such k is found the
decider returns an arbitrary answer.

Let L∗ be an arbitrary decision oracle that is δ-close to L′. Say an input x is good in L∗ if for all
1 ≤ k ≤ m, 1 ≤ j ≤ m,

Prh,L∗ [L∗(x, k, j, h) = L(x, k, j, h)] > 15/16.

By a pigeonhole argument, x ∼ Un is good with probability at least 1−O(δ(m(n))2). We show that
the reduction succeeds on a good input with probability 1/16. By the Valiant-Vazirani argument, for
k = blog2 |{w : V accepts (x;w)}|c, with probability 1/8 there exists a unique w such that h(w) = 0.
It follows that whenever x is good and x ∈ LV , with probability at least 1/16, L∗(x, k, j, h) = wk

for all 1 ≤ j ≤ m, so the decider encounters the witness wk.

Remark. The argument can be strengthened to obtain a O(δm(n))-to-δ average-to-average reduc-
tion from (V,U) to (L′, U) by applying a Hadamard code to the witness w in L′ instead of revealing
its bits.

A.4 Average-case reductions for arbitrary samplable distributions

Proof of Lemma 22. Let S denote the sampler that yields the distribution ensemble D: S is a
polynomial-time computable function {0, 1}n × {0, 1}s(n) → {0, 1}n, such that S(1n,Us(n)) = Dn.

We want to be able to map instances of V into instances of V ′ in such a way that witnesses for V
can be recovered from witnesses for V ′, and so that for most x, the probability of an image of x in
the uniform distribution is polynomially related to the probability of x in distribution D.

Let V ′ be an NP-relation for language L′, whose inputs are of the form (n, k, h1, z, h2) where
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1. The integer n will denote the length of the input to the reduction coming from D,

2. The integer k ∈ [s] (s = s(n)) will encode the approximate likelihood of the input to the
reduction according to D,

3. h1 : {0, 1}n → {0, 1}k+6 is a pairwise independent hash function, and z ∈ {0, 1}k+6 is an
element in the range of h1;

4. h2 : {0, 1}s → {0, 1}s−k−3 is another pairwise independent hash function.

Suppose that the inputs (n, k, h1, z, h2) are padded appropriately so that their length depends on
n only.

A pair (w, r) is an NP-witness for input (n, k, h1, z, h2) in V ′ if the following three conditions are
satisfied: (1) V (S(1n, r);w) = 1; (2) h1(S(1n, r)) = z; (3) h2(r) = 0.

On input x, where |x| = n, the reduction produces queries (n, k, h1, h1(x), h2), for all possible values
of k by choosing h1 and h2 uniformly at random. The decider looks at all answers (wk, rk), and
returns wk if V (S(1n, rk);wk) = 1 for some k. If no such k is found, the decider returns the string
0m.

Suppose F ∗ is a δ-approximate oracle for V ′ with respect to the uniform ensemble. Given x ∈
{0, 1}n, we call an instance (n, k, h1, z, h2) good for x if the following three conditions are satisfied:

1. |x| = n, b− log2D(x)c = k, and h1(x) = z

2. There exists an r such that h1(S(1n, r)) = z and h2(r) = 0

3. If, for some r, h1(S(1n, r)) = z and h2(r) = 0, then S(1n, r) = x.

Let G(x) denote the set of all queries in L′ that are good for x. It is immediate that the sets
G(x) are pairwise disjoint over all x ∈ {0, 1}n. On the one hand, we will show that, on input
x, the reduction has a constant probability of producing a query that lands in G(x). Moreover,
conditioned on k, this query is uniformly distributed in G(x). If x ∈ L and F ∗ and V ′ agree on the
query that falls within G(x), then F ∗(x) = (w, r) with S(1n, r) = x, so V (x;w) = 1. In addition,
we will show that when x ∼ D, with probability at least 1− δs, F ∗ and V ′ do agree on a constant
fraction of G(x) for every k, so that the reduction has a constant probability of producing a query
on which F ∗ and V ′ agree.

Claim 23. Suppose |x| = n and b− log2D(x)c = k. With probability 3/4 over the choice of h1 and
h2, the instance (n, k, h1, z, h2) is in G(x).

Proof of Claim. We first show that, with probability 7/8, the instance satisfies the second condition
for goodness, i.e., there exists an r such that S(1n, r) = x and h2(r) = 0. If S(1n, r) = x, let Ir be
an indicator for the event h2(r) = 0. By our choice of k, |{r : S(1n, r) = x}| ≥ 2s−k, so that

E
[∑

r:S(1n,r)=xIr

]
≥ 2s−k E[Ir] = 8.
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As the Ir are pairwise independent, the variance of this sum is at most the expectation, so by
Chebyshev’s inequality at least one Ir = 1 with probability 7/8.

Now we look at the probability of satisfying the third condition for goodness. Fix r such that
S(1n, r) 6= x. By pairwise independence, Prh1 [h1(S(1n, r)) = h1(x)] = 2−k−6, and independently,
Prh2 [h2(r) = 0] = 2−s+k+3. It follows that

Pr[∃r : S(1n, r) 6= x and h1(S(1n, r)) = h1(x) and h2(r) = 0]

≤
∑

r:S(1n,r) 6=x
Pr[h1(S(1n, r)) = h1(x)] Pr[h2(r) = 0]

≤
∑

r∈{0,1}s
2−k−62−s+k+3 = 1/8.

It follows that both conditions for goodness are satisfied with probability at least 3/4.

Claim 24. For every x, U(G(x)) ≥ 3
64D(x)/ns.

Proof of Claim. Consider a random string (n, k, h1, z, h2). With probability 1/ns, n = |x| and
k = b− log2D(x)c. Conditioned on this, z = h1(x) with probability 2−k−3. By the last Claim, with
probability 3/4 over h1 and h2, (n, k, h1, h1(x), h2) is in G(x). Putting this together,

Pr[(n, k, h1, z, h2) ∈ G(x)] ≥ 1
ns

· 3
4
· 2−k−3 ≥ 3

64
· D(x)

ns
.

Let Z denote the set of all x ∈ LV for which

Pry∼U ,F ∗ [V ′(y, F ∗(y)) = 1 | y ∈ G(x)] > 8/9,

so that if the k-th query qk lands into G(x), the answer (wk, rk) has a 8/9 probability of being a
good witness for the query. It follows that, unconditionally, V (qk, F

∗(qk)) = 1 with probability at
least 8/9 · 3/4 = 2/3, and the decider is successful on the queries that come from S.

On the other hand, by the disjointness of the sets G(x),

δ ≥
∑

x∈LV

U(G(x)) Pry∼U [V ′(y, F ∗(y)) = 0 | y ∈ G(x)]

>
∑

x∈Z
U(G(x)) · 1

9

≥
∑

x∈Z

1
9
· 3
64

· D(x)
ns

by Claim 24

= Ω(D(Z)/ns),

so that D(Z) = O(δns).
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