Private-key encryption is perhaps the most basic cryptographic task. In the simplest model of encryption there are two honest participants, Alice and Bob, who interact over a communication channel. The channel interaction is observed by a third party Eve who may be malicious. Alice's goal is to send a single message M to Bob so that Bob can recover the message but Eve cannot obtain information about what was sent.

In the private-key setting, Alice and Bob are assumed to have agreed upon a common key K that is not known to Eve. Let us model messages and keys as binary strings: The message M can be any string from the message space $\{0,1\}^m$, and the key K is a uniformly random string from $\{0,1\}^n$.

If n is at least as large as m, the following simple solution called the one-time pad achieves perfect secrecy: Alice encrypts the message M under key K into the ciphertext $M \oplus K$ obtained by taking the pairwise XOR of the bits of M and K. Upon receiving C, Bob decrypts to $C \oplus K$. Clearly the decryption is correct. Intuitively, it is also secret because no matter what M is, $M \oplus K$ is a uniformly random string in $\{0, 1\}^m$, so the distribution that Eve observes is completely independent of the message being sent.

However the assumption that n is at least as large as m is often unrealistic. In usual applications Alice and Bob want to agree on a fairly short key (at most several thousand bits) and use it to encrypt much longer messages (megabytes or gigabytes long). But even if m = n+1 it is impossible to make the encryption of a message statistically independent of the message.

The solution is to extend the *n*-bit key K into an *m*-long bit string G(K) which "looks" uniformly random, even though it is statistically far from being random. Alice now encrypts by sending $M \oplus G(K)$, and Bob decrypts by computing $C \oplus G(K)$. From Eve's perspective, G(K) looks like a uniformly random string in $\{0, 1\}^n$, and so does $M \oplus G(K)$.

1 Pseudorandom generators and one-way permutations

What does it mean for a string y coming from some distribution over $\{0, 1\}^m$ to "look" uniformly random? Let's ask the opposite question – what does it mean for y to *not* look random? It means that we should have some way of distinguishing y from a uniformly random string u of the same length. In computational complexity and cryptography, we model the distinguisher as an efficient algorithm that takes y or u as an input, tends to accept when its input is y, and tends to reject when its input is u.

This suggests the following definition: A distribution \mathcal{Y} over $\{0,1\}^m$ is (s,ε) -pseudorandom if for every algorithm D of complexity at most s,

$$\Pr_{y \sim \mathcal{Y}}[D(y) \text{ accepts}] - \Pr_{u \sim \{0,1\}^m}[D(u) \text{ accepts}] \le \varepsilon.$$

We won't define complexity formally, but you can think of it as the size of the program for D plus the worst-case running time of this program on inputs of length m. A *pseudorandom generator* is an algorithm that takes n uniformly random bits and expands them deterministically into mpseudorandom bits. **Definition 1.** A function $G: \{0,1\}^n \to \{0,1\}^m$, where m > n, is an (s,ε) pseudorandom generator if for every algorithm D of complexity at most s,

$$\Pr_{x \sim \{0,1\}^n}[D(G(x)) \text{ accepts}] - \Pr_{u \sim \{0,1\}^m}[D(u) \text{ accepts}] \le \varepsilon.$$

In a typical application like private-key encryption, we may think of the input length n as being 1000 or 2000 bits long, while s as much larger and ε as tiny, e.g. $s = 2^{100}$ and $\varepsilon = 2^{-100}$. What about the output length m? Once we have a pseudorandom generator that produces n + 1 bits of output, we can bootstrap it to obtain as many output bits as we want, so we will focus on the case m = n + 1.

It is somewhat tricky to construct pseudorandom generators because the definition requires us to argue about all possible distinguishers D and we may not know how such a distinguisher works. It may be easier to build pseudorandom generators out of potentially more primitive objects.

One such object are one-way permutations. A one-way function is a function that is easy to compute, but hard to invert, even for random inputs. A one-way permutation is a pseudorandom function that is also a permutation, i.e. every output comes from exactly one input.

Definition 2. A permutation $\pi: \{0,1\}^n \to \{0,1\}^n$ is (s,ε) -one-way if for every algorithm *Inv* of complexity at most s, $\Pr_{x \sim \{0,1\}^n}[Inv(\pi(x)) = x] \leq \varepsilon$.

In 1982 Yao showed how to obtain a pseudorandom generator from any one-way permutation. His construction was simplified considerably by Goldreich and Levin who proved the following theorem:

Theorem 3 (Goldreich and Levin). If $f: \{0,1\}^n \to \{0,1\}^n$ is a $(\operatorname{poly}(n/\varepsilon)(s+s_{\pi}), \varepsilon/2)$ one-way permutation of complexity s_{π} , then the function $G: \{0,1\}^{2n} \to \{0,1\}^{2n+1}$ given by

$$G(x,r) = (\pi(x), r, \langle x, r \rangle)$$

is an (s, ε) -pseudorandom generator.

2 Fourier analysis of the Hadamard code

The proof of the Goldreich-Levin theorem is closely related to algorithmic aspects of decoding the $[2^n, n, 2^n/2]$ Hadamard code. (We now change convention and use n to denote message length and not block length as before.) Suppose we are given a corrupted codeword f of the Hadamard code. We can decode f by brute force: Look at all 2^n possible codewords Had_a , compute their distances to f and output the one that is closest to f. Since the block length is 2^n , the running time of this decoding algorithm is about 2^{2n} .

Can we decode any faster? The corrupted codeword f is 2^n bits long, so merely inspecting the whole codeword will take 2^n time. This suggests we may not be able to substantially improve upon the brute-force algorithm. However, this intuition is incorrect: We will show how to perform the decoding by only inspecting a small number of random entries inside the codeword.

We will in fact solve a more general problem called *list-decoding*. Recall that in a code of distance d, decoding is only possible (in the worst case) if the number of errors t is at most (d-1)/2. If t is larger, there may be ambiguity in the decoding as there can be more than one answer within

distance t of the corrupted codeword. In this setting, a sensible possibility would be to ask for a description of all codewords within distance t. The maximum number of such codewords is called the *list size* of the code at radius t.

Recall that the Hadamard encoding of a message a in $\{0, 1\}^n$ consists of the evaluations $\langle a, x \rangle \mod 2$ over all x in $\{0, 1\}^n$. Let's represent the codeword entries by $\{1, -1\}$ instead of $\{0, 1\}$. Then the encoding of a consists of the evaluations of the character function $\chi_a(x) = (-1)^{\langle a, x \rangle}$. We will identify the codewords of the Hadamard code with the character functions.

Under this convention, a corrupted codeword can be viewed as some function $f: \{0, 1\}^n \to \{1, -1\}$. The list decoding problem asks us to find all codewords χ_a that has large agreement with the function f; specifically, given an agreement parameter $\varepsilon > 0$, we want all a such that $\Pr_{x \sim \{0,1\}^n}[f(x) = \chi_a(x)] \ge (1+\varepsilon)/2$, or equivalently all a such that

$$\hat{f}_a = \mathrm{E}[f(x)\chi_a(x)] \ge \varepsilon.$$

From this Fourier-analytic point of view, the list size of the Hadamard code can be bounded immediately via Parseval's identity: Every codeword χ_a in the list must contribute $\hat{f}_a^2 \geq \varepsilon^2$ to the square sum of the Fourier coefficients, so the list size of the Hadamard code can be at most $1/\varepsilon^2$.

3 The Kushilevitz-Mansour algorithm

We will generalize our objective a little bit and seek to find all a such that $\hat{f}_a^2 \ge \varepsilon^2$, and maybe even allow for a few as that don't quite satisfy this condition. The idea is to try to locate these relevant as by a divide-and-conquer strategy. One nice way to visualize this strategy is as a search process along the following full binary tree of depth n. The root of this binary tree is labeled by the value $\sum_{a \in \{0,1\}^n} \hat{f}_a^2$. Its left and right children are labeled by the partial sums

$$\sum_{a: a_1=0} \hat{f}_a^2 \quad \text{and} \quad \sum_{a: a_1=1} \hat{f}_a^2$$

In general, a node at level i is indexed by a string $v \in \{0,1\}^i$ and is labeled by the value

$$\sum_{a: a_1=v_1,\ldots,a_i=v_i} \hat{f}_a^2$$

so that the leaf indexed by a is labeled by \hat{f}_a^2 .

Let's say a node v is relevant if its label is at least ε^2 . Although there are exponentially many nodes in the tree, there can be at most n/ε^2 relevant ones because the labels in each level sum to 1. If we could calculate the labels, it would be easy to identify all the relevant nodes via depth-first search starting at the root and pruning the search path at irrelevant nodes.

How do we calculate the values of the labels? Using the Fourier coefficient formula

$$\hat{f}_a = \mathbf{E}[f(x)\chi_a(x)] \tag{1}$$

we can obtain these values in time exponential in n. But if we are willing to settle for a probabilistic approximation, we can do much better. Let's start at the leaves. From the formula (1) we get

$$\hat{f}_a^2 = \mathbf{E}[f(x)\chi_a(x)]\mathbf{E}[f(y)\chi_a(y)] = \mathbf{E}[f(x)f(y)\chi_a(x+y)].$$

This suggests that to estimate \hat{f}_a^2 , we ought to sample some number of random pairs (x, y) and output the average of the values $f(x)f(y)\chi_a(x+y)$.

Now let $v \in \{0,1\}^i$ be an arbitrary node in the tree at level *i* and FIX(v) be the set of those $a \in \{0,1\}^n$ with $a_1 = v_1, \ldots, a_i = v_i$. We want to estimate the value

$$\sum_{a \in FIX(v)} \hat{f}_a^2 = \mathbb{E}\bigg[f(x)f(y)\sum_{a \in FIX(v)} \chi_a(x+y)\bigg].$$

The set FIX(v) could be exponentially large so we have to be a bit careful here. Recall that $\chi_a(z) = (-1)^{\langle a, z \rangle}$ so:

$$\sum_{a \in FIX(v)} \chi_a(z) = \sum_{a \in FIX(v)} (-1)^{\langle a, z \rangle}$$

If z is nonzero along any of the coordinates i + 1 up to n, this sum vanishes; otherwise, it equals $2^{n-i}\chi_v(z)$. So the only (x, y) pairs that contribute to the sum are those in which x and y agree on the last n - i coordinates, and we can rewrite the identity as

$$\sum_{a \in FIX(v)} \hat{f}_a^2 = \mathcal{E}_{x',y' \sim \{0,1\}^i, u \sim \{0,1\}^{n-i}} [f(x'u)f(y'u)\chi_v(x'+y')].$$

Here, the first *i* bits x' and y' of x and y are chosen independently at random, while the last n-i bits are random but identical in x and y. (When i = 0 the right side equals $E[f(u)^2] = 1$, which is a good sign.)

We now have all the ingredients for the Kushilevitz-Mansour algorithm. First, we have a probabilistic procedure $\hat{\mathbf{S}} \operatorname{amp}(f, v)$ which estimates the label of node v as follows: Sample $O(n/\varepsilon^6)$ random triples (x', y', u) and output the average of the values $f(x'u)f(y'u)\chi_v(x'+y')$.

Lemma 4. With probability at least $1 - \varepsilon^2/20n$, $\hat{\mathbf{S}}_{amp}(f, v)$ outputs a value between $\ell(v) - \varepsilon^2/3$ and $\ell(v) + \varepsilon^2/3$, where

$$\ell(v) = \sum_{a: a_1 = v_1, \dots, a_i = v_i} \hat{f}_a^2$$

Now here is the Kushilevitz-Mansour algorithm:

Algorithm KM: On input a function $f: \{0, 1\}^n \to \{1, -1\}$ and $\varepsilon > 0$, Apply the following recursive procedure $\mathbf{P}(v)$ starting with v equal to the empty string: If $\widehat{\mathbf{Samp}}(f, v) \ge 2\varepsilon^2/3$: If v has length n, output v. Otherwise, call $\mathbf{P}(v0)$ and $\mathbf{P}(v1)$.

Theorem 5. With probability at least 1/2, the outputs of $\mathbf{KM}(f, \varepsilon)$ include all a such that $\hat{f}_a^2 \ge \varepsilon^2$, but it produces no more than $O(n/\varepsilon^2)$ outputs in total.

Proof. Let v be any node such that $\ell(v) \geq \varepsilon^2$. By Lemma 4,

$$\Pr[\mathbf{\hat{S}amp}(f) < 2\varepsilon^2/3] \le \varepsilon^2/20n$$

Since there are at most n/ε^2 such nodes v, by a union bound we have

$$\Pr[\mathbf{\hat{S}amp}(f) < 2\varepsilon^2/3 \text{ for some } v \text{ s.t. } \ell(v) \ge \varepsilon^2] \le \frac{n}{\varepsilon^2} \cdot \frac{\varepsilon^2}{20n} \le \frac{1}{20}$$

Therefore, all $a \in \{0,1\}^n$ such that $\ell(a) = \hat{f}_a^2 \ge \varepsilon^2$ will be included in the output of $\mathbf{KM}(f,\varepsilon)$ with probability at least 1 - 1/20 = 19/20.

Let B be the set of nodes whose label exceeds $\varepsilon^2/3$ and B' be the set of nodes outside B whose parent node is in B. Since the nodes in B form a tree, we must have $|B'| \leq |B| + 1$. There must be fewer than $3n/\varepsilon^2$ nodes in B, so B' can have at most $3n/\varepsilon^2 + 1$ nodes. By a very similar calculation as above,

$$\Pr[\mathbf{\hat{S}amp}(f,v) \ge 2\varepsilon^2/3 \text{ for some } v \text{ in } B'] \le \left(\frac{3n}{\varepsilon^2} + 1\right) \cdot \frac{\varepsilon^2}{20n} \le \frac{1}{5}.$$

Therefore, with probability at least 4/5, $\hat{\mathbf{S}}\mathbf{amp}(f, v)$ will output a value smaller than than $2\varepsilon^2/3$ on all nodes v in B', so $\mathbf{KM}(f, \varepsilon)$ will not make any recursive calls to \mathbf{P} on a node outside $B \cup B'$. Since there are at most $O(n/\varepsilon^2)$ nodes inside $B \cup B'$, $\mathbf{KM}(f, \varepsilon)$ can produce at most this many outputs.

With probability at least $1 - 1/20 - 1/5 \ge 1/2$, both of these conditions are met.

It remains to prove Lemma 4. We make use of Chebyshev's inequality:

Theorem 6 (Chebyshev's inequality). For any random variable X and t > 0,

$$\Pr[|X - \mathbb{E}[X]| > t\sqrt{\operatorname{Var}[X]}] < 1/t^2.$$

Proof of Lemma 4. Let $X_i = f(x'_i u_i) f(y'_i u_i) \chi_v(x'_i + y'_i)$, where (x'_i, y'_i, u_i) is the *i*-th sample. **Samp**(f, v) outputs the value $X = \frac{1}{m}(X_1 + \cdots + X_m)$, where *m* is the number of samples used. By linearity of expectation,

$$E[X] = \frac{1}{m}(E[X_1] + \dots + E[X_m]) = E[f(x'u)f(y'u)\chi_v(x'+y')] = \ell(v)$$

and by independence of X_i and X_j for every pair $i \neq j$,

$$\operatorname{Var}[X] = \frac{1}{m^2} (\operatorname{Var}[X_1] + \dots + \operatorname{Var}[X_m]) \le \frac{1}{m}$$

since the variables X_1, \ldots, X_m are $\{-1, 1\}$ valued and can have variance at most 1. From Chebyshev's inequality we get that

$$\Pr[|X - \ell(v)| > t/\sqrt{m}] < 1/t^2.$$

To get the desired conclusion, we choose m and t so that $t/\sqrt{m} = \varepsilon^2/3$ and $1/t^2 = \varepsilon^2/20n$.

4 Proof of the Goldreich-Levin theorem

We prove the contrapositive statement: Suppose that G is not an (s, ε) -pseudorandom generator, namely there is a distinguisher D of complexity s such that

$$\Pr_{x,r\sim\{0,1\}^n}[D(G(x,r)) \text{ accepts}] - \Pr_{u\sim\{0,1\}^{2n+1}}[D(u) \text{ accepts}] > \varepsilon.$$

We will argue that there is then an algorithm Inv of complexity $poly(n/\varepsilon)(s+s_{\pi})$ such that

$$\Pr_{x \sim \{0,1\}^n}[Inv(\pi(x)) = x] > \varepsilon/2$$

and so π is not $(\text{poly}(n/\varepsilon)(s+s_{\pi}), \varepsilon/2)$ -one-way.

Without loss of generality, let us assume that D outputs 1 when it accepts and -1 when it rejects. Because $E[D(\cdot)] = 2 \Pr[D(\cdot) = 1] - 1$, we can rewrite our assumption on D as

$$\mathbf{E}_{x,r \sim \{0,1\}^n} [D(G(x,r))] - \mathbf{E}_{u \sim \{0,1\}^{2n+1}} [D(u)] > 2\varepsilon.$$

Unwinding the definition of G, we get

$$E_{x,r \sim \{0,1\}^n}[D(\pi(x), r, \langle x, r \rangle)] - E_{u \sim \{0,1\}^{2n+1}}[D(u)] > 2\varepsilon.$$

We can write u in the form $(\pi(x), r, b)$, where $x, r \sim \{0, 1\}^n$ and $b \sim \{0, 1\}$ are independent. (Since π is a permutation, $(\pi(x), r, b)$ is uniformly distributed in $\{0, 1\}^{2n+1}$.)

$$\mathbf{E}_{x,r\sim\{0,1\}^n}[D(\pi(x),r,\langle x,r\rangle)] - \mathbf{E}_{x,r\sim\{0,1\}^n,b\sim\{0,1\}}[D(\pi(x),r,b)] > 2\varepsilon.$$

We now make use of the following technical lemma. This lemma tells us that if F(X) is distinguishable from $F(\tilde{X})$, then $\tilde{X}F(\tilde{X})$ can predict X to some advantage.

Lemma 7. Let $F(-1), F(1) \sim \mathbb{R}$ and $X \sim \{-1, 1\}$ be (possibly dependent) random variables, and $\tilde{X} \sim \{-1, 1\}$ be uniformly random and independent of F and X. Then

$$E[\tilde{X}F(\tilde{X}) \cdot X] = E[F(X)] - E[F(\tilde{X})]$$

Applying the lemma to $F(\cdot) = D(\pi(x), r, \cdot), X = (-1)^{\langle x, r \rangle}$, and $\tilde{X} = (-1)^b$ we get that

$$\mathbb{E}_{x,b,r}[(-1)^{b}D(\pi(x),r,b)\cdot(-1)^{\langle x,r\rangle}] > 2\varepsilon$$

from where

$$\mathbf{E}_{x,b}[\mathbf{E}_r[(-1)^b D(\pi(x), r, b) \cdot (-1)^{\langle x, r \rangle}]] > 2\varepsilon$$

It follows that with probability at least ε over the choice of x and b, we must have

$$\mathbf{E}_r[(-1)^b D(\pi(x), r, b) \cdot (-1)^{\langle x, r \rangle}] > \varepsilon.$$
(2)

Now consider the following algorithm Inv: On input $\pi(x)$, choose a random b and run $\mathbf{KM}(f,\varepsilon)$, where $f(r) = (-1)^b D(\pi(x), r, b)$. If the output of $\mathbf{KM}(f, \varepsilon)$ contains an a such that $\pi(a) = \pi(x)$, output this a.

If x and b satisfy (2), then by Theorem 5 with probability at least 1/2, the output of $\mathbf{KM}(f,\varepsilon)$ will contain x, and $Inv(\pi(x))$ outputs x with probability at least $\varepsilon/2$.

We now analyze the running time of Inv. From Theorem 5 (more precisely, from its proof) it follows that algorithm **KM** makes no more than $O(n/\varepsilon^2)$ calls to **Samp**, and each of these calls results in $O(n/\varepsilon^6)$ evaluations of D. Since each evaluation of G has complexity s, the complexity of this part of the algorithm is $O(n^2/\varepsilon^8) \cdot s$. In addition, Inv evaluates π on the $O(n/\varepsilon^2)$ outputs of **KM**. This part has complexity $O(n/\varepsilon^2) \cdot s_{\pi}$. Thus Inv has complexity $O(n/\varepsilon^2)s_{\pi} + O(n^2/\varepsilon^8)s = \text{poly}(n/\varepsilon)(s+s_{\pi})$.

Proof of Lemma 7. Let $P = F(\tilde{X})(1 + X\tilde{X})$. Since \tilde{X} is random and independent of F, X we have

$$\mathbf{E}[P] = \frac{1}{2} \mathbf{E}[P \mid X = \tilde{X}] + \frac{1}{2} \mathbf{E}[P \mid X \neq \tilde{X}] = \frac{1}{2} \mathbf{E}[2F(X)] + \frac{1}{2} \cdot \mathbf{0} = \mathbf{E}[F(X)].$$

Therefore $E[F(\tilde{X})(1+X\tilde{X})] = E[F(X)]$. The lemma follows by linearity of expectation.