Private-key encryption is perhaps the most basic cryptographic task. In the simplest model of encryption there are two honest participants, Alice and Bob, who interact over a communication channel. The channel interaction is observed by a third party Eve who may be malicious. Alice's goal is to send a single message M to Bob so that Bob can recover the message but Eve cannot obtain information about what was sent.

In the private-key setting, Alice and Bob are assumed to have agreed upon a common key K that is not known to Eve. Let us model messages and keys as binary strings: The message M can be any string from the message space $\{0,1\}^{m}$, and the key K is a uniformly random string from $\{0,1\}^{n}$.

If n is at least as large as m, the following simple solution called the one-time pad achieves perfect secrecy: Alice encrypts the message M under key K into the ciphertext $M \oplus K$ obtained by taking the pairwise XOR of the bits of M and K. Upon receiving C, Bob decrypts to $C \oplus K$. Clearly the decryption is correct. Intuitively, it is also secret because no matter what M is, $M \oplus K$ is a uniformly random string in $\{0,1\}^{m}$, so the distribution that Eve observes is completely independent of the message being sent.

However the assumption that n is at least as large as m is often unrealistic. In usual applications Alice and Bob want to agree on a fairly short key (at most several thousand bits) and use it to encrypt much longer messages (megabytes or gigabytes long). But even if $m=n+1$ it is impossible to make the encryption of a message statistically independent of the message.

The solution is to extend the n-bit key K into an m-long bit string $G(K)$ which "looks" uniformly random, even though it is statistically far from being random. Alice now encrypts by sending $M \oplus G(K)$, and Bob decrypts by computing $C \oplus G(K)$. From Eve's perspective, $G(K)$ looks like a uniformly random string in $\{0,1\}^{n}$, and so does $M \oplus G(K)$.

1 Pseudorandom generators and one-way permutations

What does it mean for a string y coming from some distribution over $\{0,1\}^{m}$ to "look" uniformly random? Let's ask the opposite question - what does it mean for y to not look random? It means that we should have some way of distinguishing y from a uniformly random string u of the same length. In computational complexity and cryptography, we model the distinguisher as an efficient algorithm that takes y or u as an input, tends to accept when its input is y, and tends to reject when its input is u.

This suggests the following definition: A distribution \mathcal{Y} over $\{0,1\}^{m}$ is (s, ε)-pseudorandom if for every algorithm D of complexity at most s,

$$
\operatorname{Pr}_{y \sim \mathcal{Y}}[D(y) \text { accepts }]-\operatorname{Pr}_{u \sim\{0,1\}^{m}}[D(u) \text { accepts }] \leq \varepsilon .
$$

We won't define complexity formally, but you can think of it as the size of the program for D plus the worst-case running time of this program on inputs of length m. A pseudorandom generator is an algorithm that takes n uniformly random bits and expands them deterministically into m pseudorandom bits.

Definition 1. A function $G:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, where $m>n$, is an (s, ε) pseudorandom generator if for every algorithm D of complexity at most s,

$$
\operatorname{Pr}_{x \sim\{0,1\}^{n}}[D(G(x)) \text { accepts }]-\operatorname{Pr}_{u \sim\{0,1\}^{m}}[D(u) \text { accepts }] \leq \varepsilon .
$$

In a typical application like private-key encryption, we may think of the input length n as being 1000 or 2000 bits long, while s as much larger and ε as tiny, e.g. $s=2^{100}$ and $\varepsilon=2^{-100}$. What about the output length m ? Once we have a pseudorandom generator that produces $n+1$ bits of output, we can bootstrap it to obtain as many output bits as we want, so we will focus on the case $m=n+1$.

It is somewhat tricky to construct pseudorandom generators because the definition requires us to argue about all possible distinguishers D and we may not know how such a distinguisher works. It may be easier to build pseudorandom generators out of potentially more primitive objects.

One such object are one-way permutations. A one-way function is a function that is easy to compute, but hard to invert, even for random inputs. A one-way permutation is a pseudorandom function that is also a permutation, i.e. every output comes from exactly one input.

Definition 2. A permutation $\pi:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is (s, ε)-one-way if for every algorithm Inv of complexity at most $s, \operatorname{Pr}_{x \sim\{0,1\}^{n}}[\operatorname{Inv}(\pi(x))=x] \leq \varepsilon$.

In 1982 Yao showed how to obtain a pseudorandom generator from any one-way permutation. His construction was simplified considerably by Goldreich and Levin who proved the following theorem:

Theorem 3 (Goldreich and Levin). If $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a $\left(\operatorname{poly}(n / \varepsilon)\left(s+s_{\pi}\right), \varepsilon / 2\right)$ one-way permutation of complexity s_{π}, then the function $G:\{0,1\}^{2 n} \rightarrow\{0,1\}^{2 n+1}$ given by

$$
G(x, r)=(\pi(x), r,\langle x, r\rangle)
$$

is an (s, ε)-pseudorandom generator.

2 Fourier analysis of the Hadamard code

The proof of the Goldreich-Levin theorem is closely related to algorithmic aspects of decoding the [$2^{n}, n, 2^{n} / 2$] Hadamard code. (We now change convention and use n to denote message length and not block length as before.) Suppose we are given a corrupted codeword f of the Hadamard code. We can decode f by brute force: Look at all 2^{n} possible codewords $H a d_{a}$, compute their distances to f and output the one that is closest to f. Since the block length is 2^{n}, the running time of this decoding algorithm is about $2^{2 n}$.

Can we decode any faster? The corrupted codeword f is 2^{n} bits long, so merely inspecting the whole codeword will take 2^{n} time. This suggests we may not be able to substantially improve upon the brute-force algorithm. However, this intuition is incorrect: We will show how to perform the decoding by only inspecting a small number of random entries inside the codeword.
We will in fact solve a more general problem called list-decoding. Recall that in a code of distance d, decoding is only possible (in the worst case) if the number of errors t is at most $(d-1) / 2$. If t is larger, there may be ambiguity in the decoding as there can be more than one answer within
distance t of the corrupted codeword. In this setting, a sensible possibility would be to ask for a description of all codewords within distance t. The maximum number of such codewords is called the list size of the code at radius t.

Recall that the Hadamard encoding of a message a in $\{0,1\}^{n}$ consists of the evaluations $\langle a, x\rangle \bmod 2$ over all x in $\{0,1\}^{n}$. Let's represent the codeword entries by $\{1,-1\}$ instead of $\{0,1\}$. Then the encoding of a consists of the evaluations of the character function $\chi_{a}(x)=(-1)^{\langle a, x\rangle}$. We will identify the codewords of the Hadamard code with the character functions.

Under this convention, a corrupted codeword can be viewed as some function $f:\{0,1\}^{n} \rightarrow\{1,-1\}$. The list decoding problem asks us to find all codewords χ_{a} that has large agreement with the function f; specifically, given an agreement parameter $\varepsilon>0$, we want all a such that $\operatorname{Pr}_{x \sim\{0,1\}^{n}}[f(x)=$ $\left.\chi_{a}(x)\right] \geq(1+\varepsilon) / 2$, or equivalently all a such that

$$
\hat{f}_{a}=\mathrm{E}\left[f(x) \chi_{a}(x)\right] \geq \varepsilon .
$$

From this Fourier-analytic point of view, the list size of the Hadamard code can be bounded immediately via Parseval's identity: Every codeword χ_{a} in the list must contribute $\hat{f}_{a}^{2} \geq \varepsilon^{2}$ to the square sum of the Fourier coefficients, so the list size of the Hadamard code can be at most $1 / \varepsilon^{2}$.

3 The Kushilevitz-Mansour algorithm

We will generalize our objective a little bit and seek to find all a such that $\hat{f}_{a}^{2} \geq \varepsilon^{2}$, and maybe even allow for a few as that don't quite satisfy this condition. The idea is to try to locate these relevant a s by a divide-and-conquer strategy. One nice way to visualize this strategy is as a search process along the following full binary tree of depth n. The root of this binary tree is labeled by the value $\sum_{a \in\{0,1\}^{n}} \hat{f}_{a}^{2}$. Its left and right children are labeled by the partial sums

$$
\sum_{a: a_{1}=0} \hat{f}_{a}^{2} \text { and } \sum_{a: a_{1}=1} \hat{f}_{a}^{2}
$$

In general, a node at level i is indexed by a string $v \in\{0,1\}^{i}$ and is labeled by the value

$$
\sum_{a: a_{1}=v_{1}, \ldots, a_{i}=v_{i}} \hat{f}_{a}^{2}
$$

so that the leaf indexed by a is labeled by \hat{f}_{a}^{2}.
Let's say a node v is relevant if its label is at least ε^{2}. Although there are exponentially many nodes in the tree, there can be at most n / ε^{2} relevant ones because the labels in each level sum to 1. If we could calculate the labels, it would be easy to identify all the relevant nodes via depth-first search starting at the root and pruning the search path at irrelevant nodes.

How do we calculate the values of the labels? Using the Fourier coefficient formula

$$
\begin{equation*}
\hat{f}_{a}=\mathrm{E}\left[f(x) \chi_{a}(x)\right] \tag{1}
\end{equation*}
$$

we can obtain these values in time exponential in n. But if we are willing to settle for a probabilistic approximation, we can do much better. Let's start at the leaves. From the formula (1) we get

$$
\hat{f}_{a}^{2}=\mathrm{E}\left[f(x) \chi_{a}(x)\right] \mathrm{E}\left[f(y) \chi_{a}(y)\right]=\mathrm{E}\left[f(x) f(y) \chi_{a}(x+y)\right] .
$$

This suggests that to estimate \hat{f}_{a}^{2}, we ought to sample some number of random pairs (x, y) and output the average of the values $f(x) f(y) \chi_{a}(x+y)$.

Now let $v \in\{0,1\}^{i}$ be an arbitrary node in the tree at level i and $\operatorname{FIX}(v)$ be the set of those $a \in\{0,1\}^{n}$ with $a_{1}=v_{1}, \ldots, a_{i}=v_{i}$. We want to estimate the value

$$
\sum_{a \in F I X(v)} \hat{f}_{a}^{2}=\mathrm{E}\left[f(x) f(y) \sum_{a \in F I X(v)} \chi_{a}(x+y)\right] .
$$

The set $F I X(v)$ could be exponentially large so we have to be a bit careful here. Recall that $\chi_{a}(z)=(-1)^{\langle a, z\rangle}$ so:

$$
\sum_{a \in F I X(v)} \chi_{a}(z)=\sum_{a \in F I X(v)}(-1)^{\langle a, z\rangle}
$$

If z is nonzero along any of the coordinates $i+1$ up to n, this sum vanishes; otherwise, it equals $2^{n-i} \chi_{v}(z)$. So the only (x, y) pairs that contribute to the sum are those in which x and y agree on the last $n-i$ coordinates, and we can rewrite the identity as

$$
\sum_{a \in F I X(v)} \hat{f}_{a}^{2}=\mathrm{E}_{x^{\prime}, y^{\prime} \sim\{0,1\}^{i}, u \sim\{0,1\}^{n-i}}\left[f\left(x^{\prime} u\right) f\left(y^{\prime} u\right) \chi_{v}\left(x^{\prime}+y^{\prime}\right)\right] .
$$

Here, the first i bits x^{\prime} and y^{\prime} of x and y are chosen independently at random, while the last $n-i$ bits are random but identical in x and y. (When $i=0$ the right side equals $\mathrm{E}\left[f(u)^{2}\right]=1$, which is a good sign.)

We now have all the ingredients for the Kushilevitz-Mansour algorithm. First, we have a probabilistic procedure $\hat{\operatorname{Samp}}(f, v)$ which estimates the label of node v as follows: Sample $O\left(n / \varepsilon^{6}\right)$ random triples $\left(x^{\prime}, y^{\prime}, u\right)$ and output the average of the values $f\left(x^{\prime} u\right) f\left(y^{\prime} u\right) \chi_{v}\left(x^{\prime}+y^{\prime}\right)$.
Lemma 4. With probability at least $1-\varepsilon^{2} / 20 n, \hat{\mathbf{S}} \boldsymbol{\operatorname { a m p }}(f, v)$ outputs a value between $\ell(v)-\varepsilon^{2} / 3$ and $\ell(v)+\varepsilon^{2} / 3$, where

$$
\ell(v)=\sum_{a: a_{1}=v_{1}, \ldots, a_{i}=v_{i}} \hat{f}_{a}^{2} .
$$

Now here is the Kushilevitz-Mansour algorithm:
Algorithm KM: On input a function $f:\{0,1\}^{n} \rightarrow\{1,-1\}$ and $\varepsilon>0$,
Apply the following recursive procedure $\mathbf{P}(v)$ starting with v equal to the empty string:
If $\hat{\operatorname{Samp}}(f, v) \geq 2 \varepsilon^{2} / 3:$
If v has length n, output v.
Otherwise, call $\mathbf{P}(v 0)$ and $\mathbf{P}(v 1)$.
Theorem 5. With probability at least $1 / 2$, the outputs of $\mathbf{K M}(f, \varepsilon)$ include all a such that $\hat{f}_{a}^{2} \geq \varepsilon^{2}$, but it produces no more than $O\left(n / \varepsilon^{2}\right)$ outputs in total.

Proof. Let v be any node such that $\ell(v) \geq \varepsilon^{2}$. By Lemma 4,

$$
\operatorname{Pr}\left[\hat{\mathbf{S}} \mathbf{a m p}(f)<2 \varepsilon^{2} / 3\right] \leq \varepsilon^{2} / 20 n
$$

Since there are at most n / ε^{2} such nodes v, by a union bound we have

$$
\operatorname{Pr}\left[\hat{\mathbf{S}} \mathbf{a m p}(f)<2 \varepsilon^{2} / 3 \text { for some } v \text { s.t. } \ell(v) \geq \varepsilon^{2}\right] \leq \frac{n}{\varepsilon^{2}} \cdot \frac{\varepsilon^{2}}{20 n} \leq \frac{1}{20}
$$

Therefore, all $a \in\{0,1\}^{n}$ such that $\ell(a)=\hat{f}_{a}^{2} \geq \varepsilon^{2}$ will be included in the output of $\mathbf{K M}(f, \varepsilon)$ with probability at least $1-1 / 20=19 / 20$.

Let B be the set of nodes whose label exceeds $\varepsilon^{2} / 3$ and B^{\prime} be the set of nodes outside B whose parent node is in B. Since the nodes in B form a tree, we must have $\left|B^{\prime}\right| \leq|B|+1$. There must be fewer than $3 n / \varepsilon^{2}$ nodes in B, so B^{\prime} can have at most $3 n / \varepsilon^{2}+1$ nodes. By a very similar calculation as above,

$$
\operatorname{Pr}\left[\hat{\mathbf{S}} \mathbf{a m p}(f, v) \geq 2 \varepsilon^{2} / 3 \text { for some } v \text { in } B^{\prime}\right] \leq\left(\frac{3 n}{\varepsilon^{2}}+1\right) \cdot \frac{\varepsilon^{2}}{20 n} \leq \frac{1}{5}
$$

Therefore, with probability at least $4 / 5, \hat{\mathbf{S}} \mathbf{a m p}(f, v)$ will output a value smaller than than $2 \varepsilon^{2} / 3$ on all nodes v in B^{\prime}, so $\mathbf{K M}(f, \varepsilon)$ will not make any recursive calls to \mathbf{P} on a node outside $B \cup B^{\prime}$. Since there are at most $O\left(n / \varepsilon^{2}\right)$ nodes inside $B \cup B^{\prime}, \mathbf{K M}(f, \varepsilon)$ can produce at most this many outputs.

With probability at least $1-1 / 20-1 / 5 \geq 1 / 2$, both of these conditions are met.

It remains to prove Lemma 4. We make use of Chebyshev's inequality:
Theorem 6 (Chebyshev's inequality). For any random variable X and $t>0$,

$$
\operatorname{Pr}[|X-\mathrm{E}[X]|>t \sqrt{\operatorname{Var}[X]}]<1 / t^{2} .
$$

Proof of Lemma 4. Let $X_{i}=f\left(x_{i}^{\prime} u_{i}\right) f\left(y_{i}^{\prime} u_{i}\right) \chi_{v}\left(x_{i}^{\prime}+y_{i}^{\prime}\right)$, where $\left(x_{i}^{\prime}, y_{i}^{\prime}, u_{i}\right)$ is the i-th sample. $\hat{\mathbf{S a m p}}(f, v)$ outputs the value $X=\frac{1}{m}\left(X_{1}+\cdots+X_{m}\right)$, where m is the number of samples used. By linearity of expectation,

$$
\mathrm{E}[X]=\frac{1}{m}\left(\mathrm{E}\left[X_{1}\right]+\cdots+\mathrm{E}\left[X_{m}\right]\right)=\mathrm{E}\left[f\left(x^{\prime} u\right) f\left(y^{\prime} u\right) \chi_{v}\left(x^{\prime}+y^{\prime}\right)\right]=\ell(v)
$$

and by independence of X_{i} and X_{j} for every pair $i \neq j$,

$$
\operatorname{Var}[X]=\frac{1}{m^{2}}\left(\operatorname{Var}\left[X_{1}\right]+\cdots+\operatorname{Var}\left[X_{m}\right]\right) \leq \frac{1}{m}
$$

since the variables X_{1}, \ldots, X_{m} are $\{-1,1\}$ valued and can have variance at most 1 . From Chebyshev's inequality we get that

$$
\operatorname{Pr}[|X-\ell(v)|>t / \sqrt{m}]<1 / t^{2} .
$$

To get the desired conclusion, we choose m and t so that $t / \sqrt{m}=\varepsilon^{2} / 3$ and $1 / t^{2}=\varepsilon^{2} / 20 n$.

4 Proof of the Goldreich-Levin theorem

We prove the contrapositive statement: Suppose that G is not an (s, ε)-pseudorandom generator, namely there is a distinguisher D of complexity s such that

$$
\operatorname{Pr}_{x, r \sim\{0,1\}^{n}}[D(G(x, r)) \text { accepts }]-\operatorname{Pr}_{u \sim\{0,1\}^{2 n+1}}[D(u) \text { accepts }]>\varepsilon .
$$

We will argue that there is then an algorithm Inv of complexity $\operatorname{poly}(n / \varepsilon)\left(s+s_{\pi}\right)$ such that

$$
\operatorname{Pr}_{x \sim\{0,1\}^{n}}[\operatorname{Inv}(\pi(x))=x]>\varepsilon / 2
$$

and so π is not $\left(\operatorname{poly}(n / \varepsilon)\left(s+s_{\pi}\right), \varepsilon / 2\right)$-one-way.
Without loss of generality, let us assume that D outputs 1 when it accepts and -1 when it rejects. Because $\mathrm{E}[D(\cdot)]=2 \operatorname{Pr}[D(\cdot)=1]-1$, we can rewrite our assumption on D as

$$
\mathrm{E}_{x, r \sim\{0,1\}^{n}}[D(G(x, r))]-\mathrm{E}_{u \sim\{0,1\}^{2 n+1}}[D(u)]>2 \varepsilon .
$$

Unwinding the definition of G, we get

$$
\mathrm{E}_{x, r \sim\{0,1\}^{n}}[D(\pi(x), r,\langle x, r\rangle)]-\mathrm{E}_{u \sim\{0,1\}^{2 n+1}}[D(u)]>2 \varepsilon .
$$

We can write u in the form $(\pi(x), r, b)$, where $x, r \sim\{0,1\}^{n}$ and $b \sim\{0,1\}$ are independent. (Since π is a permutation, $(\pi(x), r, b)$ is uniformly distributed in $\{0,1\}^{2 n+1}$.)

$$
\mathrm{E}_{x, r \sim\{0,1\}^{n}}[D(\pi(x), r,\langle x, r\rangle)]-\mathrm{E}_{x, r \sim\{0,1\}^{n}, b \sim\{0,1\}}[D(\pi(x), r, b)]>2 \varepsilon .
$$

We now make use of the following technical lemma. This lemma tells us that if $F(X)$ is distinguishable from $F(\tilde{X})$, then $\tilde{X} F(\tilde{X})$ can predict X to some advantage.

Lemma 7. Let $F(-1), F(1) \sim \mathbb{R}$ and $X \sim\{-1,1\}$ be (possibly dependent) random variables, and $\tilde{X} \sim\{-1,1\}$ be uniformly random and independent of F and X. Then

$$
\mathrm{E}[\tilde{X} F(\tilde{X}) \cdot X]=\mathrm{E}[F(X)]-\mathrm{E}[F(\tilde{X})] .
$$

Applying the lemma to $F(\cdot)=D(\pi(x), r, \cdot), X=(-1)^{\langle x, r\rangle}$, and $\tilde{X}=(-1)^{b}$ we get that

$$
\mathrm{E}_{x, b, r}\left[(-1)^{b} D(\pi(x), r, b) \cdot(-1)^{\langle x, r\rangle}\right]>2 \varepsilon
$$

from where

$$
\mathrm{E}_{x, b}\left[\mathrm{E}_{r}\left[(-1)^{b} D(\pi(x), r, b) \cdot(-1)^{\langle x, r\rangle}\right]\right]>2 \varepsilon
$$

It follows that with probability at least ε over the choice of x and b, we must have

$$
\begin{equation*}
\mathrm{E}_{r}\left[(-1)^{b} D(\pi(x), r, b) \cdot(-1)^{\langle x, r\rangle}\right]>\varepsilon . \tag{2}
\end{equation*}
$$

Now consider the following algorithm Inv: On input $\pi(x)$, choose a random b and run $\mathbf{K M}(f, \varepsilon)$, where $f(r)=(-1)^{b} D(\pi(x), r, b)$. If the output of $\mathbf{K M}(f, \varepsilon)$ contains an a such that $\pi(a)=\pi(x)$, output this a.

If x and b satisfy (2), then by Theorem 5 with probability at least $1 / 2$, the output of $\mathbf{K M}(f, \varepsilon)$ will contain x, and $\operatorname{Inv}(\pi(x))$ outputs x with probability at least $\varepsilon / 2$.

We now analyze the running time of Inv. From Theorem 5 (more precisely, from its proof) it follows that algorithm KM makes no more than $O\left(n / \varepsilon^{2}\right)$ calls to $\hat{\mathbf{S a m p}}$, and each of these calls results in $O\left(n / \varepsilon^{6}\right)$ evaluations of D. Since each evaluation of G has complexity s, the complexity of this part of the algorithm is $O\left(n^{2} / \varepsilon^{8}\right) \cdot s$. In addition, Inv evaluates π on the $O\left(n / \varepsilon^{2}\right)$ outputs of KM. This part has complexity $O\left(n / \varepsilon^{2}\right) \cdot s_{\pi}$. Thus Inv has complexity $O\left(n / \varepsilon^{2}\right) s_{\pi}+O\left(n^{2} / \varepsilon^{8}\right) s=\operatorname{poly}(n / \varepsilon)\left(s+s_{\pi}\right)$.

Proof of Lemma 7. Let $P=F(\tilde{X})(1+X \tilde{X})$. Since \tilde{X} is random and independent of F, X we have

$$
\mathrm{E}[P]=\frac{1}{2} \mathrm{E}[P \mid X=\tilde{X}]+\frac{1}{2} \mathrm{E}[P \mid X \neq \tilde{X}]=\frac{1}{2} \mathrm{E}[2 F(X)]+\frac{1}{2} \cdot 0=\mathrm{E}[F(X)] .
$$

Therefore $\mathrm{E}[F(\tilde{X})(1+X \tilde{X})]=\mathrm{E}[F(X)]$. The lemma follows by linearity of expectation.

