
Codes, Boolean functions, and Expanders Lecture 7
Tokyo Institute of Technology 22 November 2013

Boolean function analysis has become an indispensable tool in understanding the limits of approx-
imation algorithms for NP-optimization problems. These are problems where good solutions may
be hard to find, but once a solution is available its quality can be easily ascertained.

An important class of NP-optimization problems are constraint satisfaction problems. One famous
example is maximum satisfiability of 3CNF clauses, or MAX-3SAT. In this problem we are given
constraints of the form

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x2

x1 ∨ x2 ∨ x3.

and want to find an assignment that simultaneously satisfies as many of them as possible. In this
example setting x1 to false (0) and x2, x3 to true (1) satisfies all four constraints.

Another example is maximum solvability of linear equations modulo 2 with three variables per
equation, or MAX-3LIN. Instances of this problem look like this:

x1 + x2 + x3 = 1

x1 + x2 + x4 = 0

x1 + x3 + x4 = 1

x2 + x3 + x4 = 1.

Given such a system of equations, how many of them can we simultaneously satisfy? In this
example you can see that we cannot satisfy all four – since the left hand sides add to zero, while
the right hand sides add to one – but we can satisfy three out of the four, for example by setting
x1 = x2 = x3 = x4 = 1.

Both MAX-3SAT and MAX-3LIN are special cases of constraint satisfaction problems over binary
alphabet.

1 Constraint satisfaction problems

A q-ary constraint satisfaction problem (qCSP) over alphabet Σ is specified by a collection of
variables x1, . . . , xn taking values in Σ and a collection of constraints φ1, . . . , φm : Σq → {0, 1},
where constraint φj is associated with a q-tuple of variables xj1 , . . . , xjq . We say an assignment
x = x1 . . . xn ∈ Σn satisfies constraint j if φj(xj1 , . . . , xjq) = 1. We say a qCSP instance is satisfiable
if there exists an assignment that simultaneously satisfies all the constraints.

In MAX-3SAT q = 3, Σ = {0, 1} and the constraints are disjunctions of literals. In MAX-3LIN,
q = 3, Σ = {0, 1}, and the constraints are linear equations in three variables modulo 2.

In general we are often interested in the following kind of problem: Given a qCSP instance where
the constraints are of a specific type, how should we go about finding an assignment that satisfies

1

as many of them as possible? We can always try brute-force search over all possible assignments,
but this takes exponential time.

Is it possible to do better? In the case of MAX-3SAT, the theory of NP-completeness tells us that if
we find an optimal solution substantially faster than by brute-force search, then we could do so for
every problem in NP, which is unlikely to be possible. This is true even if the MAX-3SAT instance
is completely consistent: Even if there exists an assignment that satisfies all the constraints, finding
such an assignmnent would take an inordinate amount of time in the worst case.

What about MAX-3LIN? If all constraints are simultaneously satsifiable, then we can find a sat-
isfying assignment, i.e. a solution to the system of equations, via linear algebra. But what the
equations are inconsistent? Can we still find an assignment that satisfies a large fraction of them?
In expectation, a random assignment will satisfy half the equations. It turns out that this is
essentially the best possible performance any efficient algorithm can guarantee in the worst case.

We will use the following terminology: We say a task is NP-hard if given an algorithm that achieves
this task in time at most t(n) ≥ n on all instances of size n, for every NP problem there exists
some other algorithm that solves all instances of size n in time t(p(n)) for some polynomial p (that
depends on the problem).

Theorem 1 (H̊astad). For any constants η, ε > 0 the following task is NP-hard: Given a MAX-
3LIN instance in which at least a 1 − η fraction of the constraints are simultaneously satisfiable,
return an assignment that satisfies at least a (1 + ε)/2 fraction of them.

Since every 3LIN constraint can be represented by four 3CNF constraints, it follows that the
following task is also NP-hard: Given a MAX-3SAT instance in which at least a 1 − η fraction of
the constraints are simultaneously satisfiable, return an assignment that satisfies at least a (7+ε)/8
fraction of them.

The proof of Theorem 1 consists of several steps. The last step uses Fourier analysis. We will work
out that part carefully but first let us give a rough sketch of what happens before Fourier analysis
comes into play.

2 The PCP theorem and parallel repetition

The PCP theorem says that approximate optimization is hard in general, but does not give precise
quantitative information about the parameters involved:

Theorem 2. There exists an alphabet Σ and constants q and ε > 0 for which the following task
is NP-hard: Given a satisfiable qCSP instance over Σ, find an assignment that satisfies at least a
1− ε fraction of the constraints.

Once we have this general form of the theorem, we can make some simplifying assumptions, for
example that q = 2. Formally, we will reduce the qCSP instance Φ from the PCP theorem to a
2CSP instance Ψ which also satisfies the theorem and has some additional nice properties.

The instance Ψ two kinds of variables: In addition to the variables x1, . . . , xn from Ψ, it also has
variables y1, . . . , ym, each taking value in Σq. When x satisfies Φ, yj is supposed to encode the
restriction of x on coordinates (j1, . . . , jq).

2

The constraints of Ψ will encode two requirements: (1) that yj satisfies φj and (2) that y is
consistent with x (i.e. that the k-th coordinate of yj is indeed equal to xjk). Formally, Ψ will have
qm constraints ψjk(yj , xjk), 1 ≤ j ≤ m, 1 ≤ k ≤ q where

ψjk(yj , xjk) = “φj(yj) is true and the kth coordinate of yj equals xjk”.

Now suppose we have an algorithm that, given a satisfiable instance Ψ, finds an assignment sat-
isfying a 1 − ε/q fraction of constraints. We will use this algorithm to do the analogous thing for
Φ. So suppose Φ is satisfiable. Then by construction, so is Ψ, so we can find an assignment (y,x)
that violates at most ε/q fraction of the constraints ψji. We claim that x can then violate at most
an ε fraction of the constraints φj . For if x violates some constraint φj , then it must be that either
xjk differs from the kth coordinate of yj , in which case ψji is violated, or if not then φj(yj) must
be false, so ψj1, . . . , ψjq are all violated. So every constraint φj that is violated by x yields at least
one constraint ψjk that is violated by (y,x).

This argument shows that without loss of generality, in Theorem 2 we may assume that q = 2 and
the instance is of the same “type” as Ψ. Specifically, we may assume that:

1. The instance is bipartite: The variables come partitioned into two sets y1, . . . , ym and x1, . . . , xn
so that the first variables in every constraint is some yj and the second variable is some xi,

2. The constraints are projections: For every constraint ψji(yj , xi) and every assignment to yj ,
there is at most one assignment πji(yj) to xi that makes ψji(yj , xi) true. (For convenience
we relabeled the constraint ψjk(yj , xjk) to ψji(yj , xi).)

Parallel repetition In order to argue the hardness of MAX-3LIN, we need the following strenght-
ening of the PCP theorem:

Theorem 3. For every γ > 0 there exists an alphabet Σ such that the following task is NP-hard:
Given a satisfiable 2CSP bipartite instance with projection constraints over Σ, find an assignment
that satisfies at least a γ-fraction of the constraints.

The main difference between this statement and the original PCP theorem is that the algorithm
here is merely required to satisfy a small γ-fraction of the constraints, and not a 1 − ε fraction of
them for some small ε. One transformation that allows us to go from the original version to this
stronger version is parallel repetition.

Given a 2CSP instance Ψ, the t-fold parallel repetition Ψt of Ψ is the following 2CSP. If Ψ has
variables x1, . . . , xn, y1, . . . , ym taking values in Σ, then Ψt has nt variables xi1...it , i1, . . . , it ∈ [n]
and mt variables yj1...jt , where j1, . . . , jt ∈ [m], taking values in Σt. The “intended assignment” to
xi1...it is (xi1 , . . . , xit) and similarly for the ys.

The constraints of Ψt are as follows: For every t-tuple of constraints ψji1(yj1 , xi1), . . . , ψjit(yjt , xit)
of Ψ there is a constraint ψji1...jit(yj1...jt , xi1...it) which evaluates to true if ψjik evaluates to true on
the kth coordinates of yj1...jt and xi1...it for all k between 1 and t.

By construction, if Ψ is satisfiable so is Ψt (because if (y,x) is a satisfying assignment for Ψ then
the intended assignment induced by (y,x) is a satisfying assignment for Ψt). Now suppose an
algorithm managed to find an assignment (yt,xt) that satisfies a γ-fraction of the constraints of

3

Ψt. We would like to use this assignment to get an assignment (y,x) that satisfies a 1− ε fraction
of the constraints of Ψ. If (yt,xt) was one of the intended assignments obtained from (y,x), we
could argue like this. Suppose (y,x) violated at least an ε fraction of the constraints ψji(yj , xi).
Then a random constraint ψji1...jit of Ψt is satisfied by (yt,xt) if and only if all the constraints
ψji1 , . . . , ψjit are satisfied simultaneously by (y,x). Since these are independent this happens with
probability at most (1− ε)t < γ if t is a sufficiently large constant.

Unfortunately, there is no reason to assume that (yt,xt) is one of the intended assignments and a
much more elaborate analysis is required to complete the proof.

We will now show how to derive Theorem 1 from Theorem 3. The proof is by reduction: We start
with the 2CSP instance Ψ from Theorem 3 and convert it into a MAX-3LIN instance Ξ with the
following properties:

1. If Ψ is satisfiable, then a 1− η fraction of the equations in Ξ are simultaneously satisfiable;

2. Every assignment that satisfies a (1 + ε)/2 fraction of the equations in Ξ can be converted
into an assignment that satisfies at least a γ fraction of the equations in Ψ.

3 Encoding assignments

How do we construct a 3LIN instance Ξ from a generic 2CSP instance Ψ? Intuitively, we want to
encode the variables of Ψ using the variables in Ξ and represent the constraints of Ψ using 3LIN
constraints. One immediate obstacle we face is that the variables of Ψ take value in some large
alphabet Σ, while the variables of Ξ are {0, 1}-valued.

Perhaps the simplest encoding we can try is to represent each variable xi in Ψ by a collection of
{0, 1}-valued variables Xi(1), . . . , Xi(|Σ|) in Ξ. The intended value of the variable Xiσ is 1 if xi
takes value σ, and 0 otherwise. Similarly, we represent yj by Yj(1), . . . , Yj(|Σ|).

We now want to write constraints in Ξ to satisfy properties 1 and 2 above. Let us start by imposing
the natural constraints on the variables of Ξ. There are two such types of constraints.

1. First, we should require that (Y,X) encodes a valid assignment, i.e. for every i, exactly one
of the variables Xi(1), . . . , Xi(|Σ|) should be set to 1, and similarly for the Y variables.

2. We should also require that the constraints of Ψ are satisfied: If Yj(τ) = 1 and Xi(σ) = 1
then the assignment (yj = τ, xi = σ) satisfies the constraint ψji.

There are various ways of writing down such constraints using boolean formulas. However, after
playing with different formulations for a while, you will see that one of two things usually goes wrong:
Either the constraints you write involve too many variables, or if they involve up to 3 variables
they are not robust: By violating a small number of constraints you can obtain assignments that
satisfy almost all the constraints of Ξ, no matter whether Ψ was satisfiable or not. Fortunately,
these issues pertain to the specific encoding we tried to use and not to the proof strategy itself.

Let us reformulate the proof strategy without making reference to the specific encoding. We take
the 2CSP instance Ψ from Theorem 3 and reduce it to a 3LIN instance Ξ. The reduction will look
as follows. We replace each variable yj and xi (that take values in some large alphabet Σ) by a

4

collection of variables Yj(1), . . . , Yj(c) and Xi(1), . . . , Xi(c) taking {0, 1}-values. We will think of Yj
and Xi as strings in {0, 1}c that encode the values of yj and xi respectively. Then each constraint
ψji(yj , xi) will be replaced by a collection of 3LIN constraints. There constraints are supposed to
“check” the following properties of the assignment:

1. (Y,X) encodes a valid assignment: Specifically, Xi should look like a proper encoding of some
value in Σ (the intended value for xi), and similarly for Yj .

2. The value encoded by Yj and the value encoded by Xi satisfy the constraint ψji.

To see how this may be possible, let us begin with the first requirement. Given some assignment to
a variable x (in Σ), how can we come up with a boolean encoding X of x so that proper encodings
are specified by 3LIN constraints? In fact we already did this: If we take X to be the Hadamard
encoding of x, then the statement “X is a codeword of the Hadamard code” can be represented by
the linearity constraints X(s) +X(t) +X(s+ t) = 0 for all s, t in the domain.

Now suppose we have a single projection constraint ψ(y, x), where y and x take values in Σ. This
means for every y, there is at most one value x = π(y) which makes ψ(y, x) true. We are given
some encodings X of x and Y of y and we want to encode the statement x = π(y) into a collection
of 3LIN formulas. If X is the Hadamard encoding of x, then X(s) = `s(x), where `s is the linear
function 〈s, ·〉. Similarly, if Y is the Hadamard encoding of y, then Y (t) = `t(y). How can we check
that x = π(y)? Suppose we observe X at position s and Y at position t. We would expect to see
the values `s(x) and `t(y). If we chose s and t so that `t and `s ◦ π are the same function, then we
could simply check that X(s) = Y (t) and this would give us evidence that x = π(y). Notice that
the constraint X(s) = Y (t), or X(s) + Y (t) = 0, is a 2LIN constraint.

Unfortunately, unless we are very lucky with π, `s ◦ π will not be a linear function at all. This
suggests that it may be helpful to extend the encoding X. The Hadamard encoding of x tells us
the value of all linear functions at x, but it seems that we may also want to know the values of some
nonlinear ones. As long as we write down the values of some nonlinear functions in the encoding,
why not write down all of them?

4 The long code

The (binary) long code over message set Σ encodes a message σ ∈ Σ by a string dictσ in {1,−1}2|Σ|
.

Each position of the long code is indexed by a string s ∈ {0, 1}Σ, and the encoding of a at position
s is given by dictσ(s) = (−1)sσ . A corrupted codeword F could be any function {0, 1}Σ → {1,−1},
and the actual codewords are the dictator functions dictσ.

A dictatorship test We now need a test for the long code based on 3LIN constraints. We
have the linearity test as a starting point. This test always accepts all the dictator functions
F (s) = (−1)sσ , but unfortunately it also accepts all the other linear functions χa(s) = (−1)〈a,s〉 for
|a| > 1. Can we weed out those functions where |a| > 1?

We won’t quite achieve this, but here is one idea about how we can distinguish between those c
that have small Hamming weight and those that have large Hamming weight. Let η be a small
constant and choose a pair s, e from {0, 1}n independently by according to different distributions.

5

We choose s from the uniform distribution, while each coordinate of e is chosen from the η-biased
distribution. This means each coordinate is chosen independently at random but takes value 1 with
some small probability η and value 0 with probability 1− η.

Now consider the event χc(s) = χc(s+ e). The probability of this event is 1
2(1 + (1− 2η)|c|). When

|c| = 1 this probability is 1 − η which is close to one, but as |c| becomes larger the probability
approaches 1/2 at an exponential rate. So if given χc we choose a random c and accept if χc(s) =
χc(s + e), we are much more likely to accept dictators than linear functions that depend on a lot
of variables.

Now we combine this idea with the linearity test: Given a function F : {0, 1}n → {1,−1}, choose
inputs s, t uniformly at random and e from the η-biased distribution and accept if F (s)F (t)F (s+
t+ e) = 1.

This test accepts all dictator functions with probability 1− η. Let’s see what we can say about F
if the test accepts it with probability at least (1 + ε)/2:

ε ≤ Es,t,e[F (s)F (t)F (s+ t+ e)]

=
∑
a,b,c

F̂aF̂bF̂c Es,t,e[χa(s)χb(t)χc(s+ t+ e)]

=
∑
a,b,c

F̂aF̂bF̂c Es[χa+c(s)] Et[χb+c(t)] Ee[χc(e)]

=
∑
a

F̂ 3
a Ee[χa(e)] =

∑
a

F̂ 3
a

∏
i : ai=1

Eei [(−1)ei] =
∑
a

F̂ 3
a (1− 2η)|a|.

Let k be the smallest integer so that (1− 2η)k+1 ≤ ε/2. Then by Parseval’s identity∑
a : |a|>k

F̂ 3
a (1− 2η)|a| ≤

∑
a : |a|>k

F̂ 2
a (1− 2η)|a| ≤ (1− 2η)k+1 ≤ ε/2

and so
ε/2 ≤

∑
a : |a|≤k

F̂ 3
a (1− 2η)|a| ≤

∑
a : |a|≤k

F̂ 3
a ≤ maxa : |a|≤k F̂a

so F must have correlation ε/2 with some character χa with |a| ≤ k. While we cannot say that
such an F is close to a dictator, this weaker conclusion will be sufficient for what we need.

5 Hard instances of MAX-3LIN

Given a 2CSP instance Ψ as in Theorem 3, we now show how to construct a 3LIN instance Ξ as
in Theorem 1. We start with a satisfiable instance Ψ, argue that in the corresponding Ξ at least a
1−η fraction of constraints can be satisfied, apply an imaginary algorithm that finds an assignment
satsifying at least (1 + ε)/2 of the constraints, and show how to convert it into an assignment that
satisfies a γ-fraction of the constraints of Ψ, where γ = Ω(ηε3/(log 1/ε)).

For each variable xi of Ψ taking values in Σ, we introduce 2|Σ|−1 boolean variables Xi in Ξ. Similarly
for every yj we introduce such variables Yj . The intended assignments to Xi and Yj are the long
code encodings of xi and yj , namely the truth-tables of the dictator functions dictxi and dictyj with
one small modification.

6

For a reason that will become apparent later, it will be convenient to work with a slightly less
redundant encoding. The dictator functions are odd: dicta(s) = −dicta(s). So it is enough to
specify the encodings Xi(s) only for half of the inputs s ∈ {0, 1}Σ; the value at the other inputs
can be inferred using the formula Xi(s) = −Xi(s) and similarly for the Yjs. This transformation
is called folding.

We now describe the constraints of Ξ. We will specify what a random constraint of Ξ looks like. To
get the instance consisting of all the constraints, we make a list of all possible random constraints
(weighted by the probability of each constraint).

A random constraint of Ξ is created by the following experiment. We first choose a random
constraint ψji of Ψ. We now want a linear constraint that involves exactly three of the boolean
variables among Xi(s), Yj(t) and “checks” that if Yj and Xi were dictators, then the value encoded
by Yj projects to the value encoded by Xi according the the projection πji specified by ψji.

To understand what this constraint should look like, suppose two of the variables involved in the
constraint are Xi(s) and Yj(t). What should the third one be? In the intended assignment, Xi(s)
and Yj(t) are the dictator functions sxi and tyj , where xi and yj satisfy the projection constraint
πji(yj) = xi. Recall that we need to check three things: (1) that Xi(s) looks like a dictator dictσ;
(2) that Yj(t) looks like a dictator dictτ and (3) that πji(τ) = σ. To achieve this, we have the
following three tests:

Xi(s)Xi(s
′)Xi(s+ s′ + e) = 1 dictatorship test for Xi

Yj(t)Yj(t
′)Yj(t+ t′ + e) = 1 dictatorship test for Yj

Yj(sπji) = Xi(s) consistency test for πji.

In the last line, sπ is the string whose τ -th coordinate is sπ(τ), i.e. the π(τ)-th coordinate of s.

Doing these tests separately is wasteful. Instead we roll all three of them into one:

Xi(s)Yj(t)Yj(sπji + t+ e) = 1

where s and t are chosen uniformly at random, and n is chosen from the η-biased distribution.

Suppose Ψ has a satisfying assignment (x,y). Let Xi and Yj be the long code encodings dictxi and
dictyj of the ith entry of x and the jth entry of y respectively. We now calculate the probability
that a random constraint of Ξ is satisfied:

Pri,j,s,t,e[dictxi(s) · dictyj (t) · dictyj (sπji + t+ e) = 1]

= Pri,j,s,t,e[dictxi(s) · dictyj (t) · dictyj (sπji)dictyj (t)dictyj (e) = 1]

= Pri,j,e[dictyj (e) = 1]

= 1− η.

If Theorem 1 was false, we would be able to efficiently find some other assignment X1, . . . , Xn,
Y1, . . . , Ym that satisfies a (1+ε)/2 fraction of constraints of Ξ. We show how to use this assignmnent
to produce a new one (x,y) that satisfies a γ-fraction of the constraints of Ψ.

Since X1, . . . , Xn, Y1, . . . , Ym satisfies a (1 + ε)/2 fraction of constraints of Ξ, we must have

Ei,j [Es,t,e[Xi(s)Yj(t)Yj(sπji + t+ e)]] ≥ ε

7

so by Markov’s inequality, Es,t,e[Xi(s)Yj(t)Yj(sπji + t+ e)] ≥ ε/2 for at least ε/2 of the pairs (i, j).

Fix such a pair and to simplify notation let X = Xi, Y = Yi, π = πji. Applying Fourier expansion
we get

ε/2 ≤ Es,t,e[X(s)Y (t)Y (sπ + t+ e)]

=
∑
a,b,c

X̂aŶbŶc Es,t,e[χa(s)χb(t)χc(sπ + t+ e)]

=
∑
a,b,c

X̂aŶbŶc Es[χa(s)χc(sπ)] Et[χb(t)χc(t)] Ee[χc(e)].

Clearly Et[χb(t)χc(t)] = 1 when b = c and 0 otherwise and Ee[χc(e)] = (1− 2η)|c|. The term

Es[χa(s)χc(sπ)] = Ees[〈a, s〉+ 〈c, sπ〉] = Ees

[∑
σ

sσ

(
aσ +

∑
τ : π(τ)=σ

cτ

)]
.

(We use Ee[?] as shorthand for E[(−1)?].) Let odd(c)σ =
∑

τ : π(τ)=σ cτ . This term vanishes unless
a = odd(c). So we get ∑

c

Ŷ 2
c X̂odd(c)(1− 2η)|c| ≥ ε/2.

Let k be the smallest integer so that (1− 2η)k+1 ≤ ε/4. Then by Parseval’s identity∑
c : |c|>k

Ŷ 2
c X̂odd(c)(1− 2η)|c| ≤ ε/4

and so

ε/4 ≤
∑

c : |c|≤k

Ŷ 2
c X̂odd(c)(1− 2η)|c|

≤
∑

c : |c|≤k

Ŷ 2
c |X̂odd(c)|

≤
√ ∑
c : |c|≤k

Ŷ 2
c

√ ∑
c : |c|≤k

Ŷ 2
c X̂

2
odd(c)

≤
√ ∑
c : |c|≤k

Ŷ 2
c X̂

2
odd(c).

The second-to-last line follows by the Cauchy-Schwarz inequality and the last one uses Parseval’s
identity.

Now consider the following probabilistic algorithm for creating an assignment to Ψ: For every
variable yj , first choose c ∈ {0, 1}Σ with probability Ŷ 2

j,c, then choose τ uniformly at random from

all τ such that cτ = 1 and assign τ to yj . Similarly, for every xi, choose a ∈ {0, 1}Σ with probability
X̂2
i,a, then choose σ uniformly at random from all σ such that aσ = 1 and assign σ to xi.

(But what if we happened to choose a = 0 or c = 0 and no choice of σ and τ is possible? This
cannot happen because of the folding. The folding guarantees that exactly half of the entries of Xi

and Yj are ones, and so X̂2
i,0 = Ŷ 2

j,0 = 0.)

8

We now argue that in expectation, this assignment satisfies at least a γ fraction of constraints of
Ψ. Fix a “good” pair (i, j) for which Es,t,e[X(s)Y (t)Y (s ◦ π+ t+ e)] ≥ ε/2. We will show that the
constraint ψ = ψji is satisfied with probability at least ε2/16k. By the calculation we just did∑

c : |c|≤k

Ŷ 2
c X̂

2
odd(c) ≥ ε

2/16

What is the probability that ψ is satisfied, i.e that π(y) = x when x and y are chosen as above?
Suppose we happened to choose c and a = odd(c). Then there must exist a σ such that aσ = 1.
For every such σ, there must exist at least one τ such that cτ = 1 and π(τ) = σ (since the number
of such y is odd). So conditioned on a = odd(c), the probability of choosing a τ such that π(τ) = σ
is at least 1/|c| and

Pr[π(y) = x] ≥ Pr[a = odd(c)] · Pr[π(y) = x | a = odd(c)]

≥
∑
c

Ŷ 2
c X̂

2
odd(c) ·

1

|c|
≥ 1

k

∑
c : |c|≤k

Ŷ 2
c X̂

2
odd(c) ≥

ε2

16k

Since at least an ε/2 fraction of pairs (i, j) is good, in expectation the assignment will satisfy at
least an ε3/16k fraction of the constraints.

9

	Constraint satisfaction problems
	The PCP theorem and parallel repetition
	Encoding assignments
	The long code
	Hard instances of MAX-3LIN

