Recall this version of the PCP theorem from last lecture.
Theorem 1. There exists an alphabet Σ and a constant $\varepsilon>0$ for which the following task is NPhard: Given a satisfiable 2CSP instance over Σ, find an assignment that satisfies a $1-\varepsilon$ fraction of constraints.

In a general 2CSP instance, a variable may be present in an arbitrary number of constraints. What if we restrict our attention to instances where every variable appears in at most d constraints, where d is small compared to the number of variables? When $d=1$, every variable appears in one constraint and finding a satisfying assignment is easy. When $d=2$, the task is a bit harder but still solvable in time linear in n. On the other hand, when d is as large as the number of constraints the problem becomes NP-hard. This suggests that the problem may become gradually harder as d gets larger.

It turns out that this intuition is incorrect:
Theorem 2. There exists an alphabet Σ and constants d and ε such that given a satisfiable 2CSP instance over Σ where every variable appears in at most d constraints, it is NP-hard to satisfy a $1-\varepsilon$ fraction of the constraints.

We prove this statement by reduction from Theorem 1. Let Φ be the 2CSP instance in question. We want to construct a new instance Φ^{\prime} which is as hard as Φ, but every variable appears in at most d constraints. Some of the variables in Φ may appear in more constraints. If variable x_{i} appears in n_{i} different constraints it is natural to replace it with n_{i} new variables $x_{i 1}^{\prime}, \ldots, x_{i n_{i}}^{\prime}$ and impose some additional constraints that force all of $x_{i 1}^{\prime}, \ldots, x_{i n_{i}}^{\prime}$ to take the same value.
The first thing we may try is to add the constraints $x_{i 1}^{\prime}=x_{i 2}^{\prime}, x_{i 2}^{\prime}=x_{i 3}^{\prime}, \ldots, x_{i\left(n_{i}-1\right)}^{\prime}=x_{i n_{i}}^{\prime}$ to Φ^{\prime}. Then if Φ has a satisfying assignment, the assignment obtained by setting $x_{i 1}^{\prime}=\cdots=x_{i n_{i}}^{\prime}=x_{i}$ will be satisfying for Φ^{\prime}. Suppose that we could then find an assignment x^{\prime} that satisfies a $1-\varepsilon^{\prime}$ fraction of its constraints of Φ^{\prime}. Can we use x^{\prime} to obtain an assignment that satisfies most constraints in Φ ?

It is not hard to see that if $\varepsilon^{\prime}=0$, the assignment $x_{i}=x_{i 1}^{\prime}=\cdots=x_{i n_{i}}^{\prime}$ is satisfying for Φ. However, even if one of the equality constraints is violated, the values of $x_{i j}^{\prime}$ could split into two equally sized sets. Then it is not clear which value to assign to x_{i} and it is possible to come up with examples where no matter which value we assign, a large fraction of the constraints of Φ will be violated.

So we need to make the equality constraints more robust: If there is no clear majority among the values $x_{i 1}^{\prime}, \ldots, x_{i n_{i}}^{\prime}$, then not one but many of the equality constraints should be violated. One way to do so is to impose the equality constraint $x_{i j}^{\prime}=x_{i j^{\prime}}^{\prime}$ for every pair $j<j^{\prime}$; but then we have done nothing about reducing the number of constraints a variable appears in.

In general the equality constraints we are looking for can be described by an undirected graph G on the vertices $\{1, \ldots, t\}$. An assignment to $x_{i 1}^{\prime}, \ldots, x_{i n_{i}}^{\prime}$ can be viewed as a partition of the vertices into sets $A_{\sigma}=\left\{j: x_{i j}^{\prime}=\sigma\right\}$, where σ ranges over Σ. On the one hand, we want the degree of this graph to be constant. On the other hand, we want that a partition $\left\{A_{\sigma}\right\}$ splits many of the edges of G, unless one of the sets A_{σ} contains most of the vertices.

Both of these properties are achieved by expander graphs. To understand expander graphs and their properties we first need to take a detour into random walks, adjacency matrices, and eigenvalues.

In what follows we will assume the graph G is undirected, connected, and d-regular.

1 Adjacency matrix and eigenvalues

Suppose a particle sits at a vertex s of some graph G. At every step, s moves to a random one of its neighbors. How long will it take s to reach a vertex in G that looks random and independent of s ?

To answer this question, it will be helpful to represent the random walk by a sequence of probability distributions $\mathbf{p}^{0}, \mathbf{p}^{1}, \ldots$ on the vertices of G, with the following interpretation: At each step $t, \mathbf{p}^{t}(u)$ is the probability of the particle ending up at vertex u after t steps of the walk. Initially, we have \mathbf{p}^{0} assign probability 1 to vertex s, and probability 0 to all the other vertices. The distribution \mathbf{p}^{t+1} can be calculated from \mathbf{p}^{t} via the formula

$$
\begin{equation*}
\mathbf{p}^{t+1}(u)=\sum_{v:(v, u) \text { is an edge }} \frac{1}{d} \cdot \mathbf{p}^{t}(v) . \tag{1}
\end{equation*}
$$

We are now interested in the following question: When t gets large, how close does the distribution \mathbf{p}^{t} get to the uniform distribution \mathbf{u} on the set of vertices? To answer this question, we need some way of measuring how "close" two distributions are. In our setting the most convenient measure is the ℓ_{2} norm. The ℓ_{2} norm of a vector \mathbf{v} is the quantity

$$
\|\mathbf{v}\|=\left(\sum_{i} \mathbf{v}_{i}^{2}\right)^{1 / 2}
$$

and the ℓ_{2} distance between two vectors \mathbf{v} and \mathbf{v}^{\prime} is the ℓ_{2} norm of $\mathbf{v}-\mathbf{v}^{\prime}$. We will think of probability distributions as vectors in \mathbb{R}^{n} (with one entry for each vertex in the graph), and we will say that two distributions \mathbf{p} and \mathbf{p}^{\prime} are ϵ-close (in ℓ_{2} distance) if $\left\|\mathbf{p}-\mathbf{p}^{\prime}\right\| \leq \epsilon$.
The (normalized) adjacency matrix of G is an $n \times n$ matrix A defined as follows:

$$
A_{u, v}=\frac{\text { number of edges between } u \text { and } v \text { in } G}{d}
$$

This matrix is symmetric and the entries in each row add up to one. Using A, we can write equation 1 in matrix form as $\mathbf{p}^{t+1}=\mathbf{p}^{t} A$ (it is customary to represent \mathbf{p}^{t} as row vectors) and so we immediately obtain that $\mathbf{p}^{t}=\mathbf{p}^{0} A^{t}$.

The eigenvalues and eigenvectors of A play a significant role in determining the behavior of random walks on G. Recall that an eigenvalue-eigenvector pair is a complex number λ and a vector \mathbf{v} such that $\mathbf{v} A=\lambda \mathbf{v}$. It is a basic theorem in linear algebra that symmetric matrices have an orthonormal basis of eigenvectors with real eigenvalues. Let's denote these pairs by $\left(\lambda_{1}, \mathbf{v}_{1}\right), \ldots,\left(\lambda_{n}, \mathbf{v}_{n}\right)$ where $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$. (Some of the λ_{i} may be negative.)
What is the meaning of this? Initially the position of our particle is determined by the distribution \mathbf{p}^{0}. Since the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ form an orthonormal basis we can decompose \mathbf{p}^{0} in the form

$$
\mathbf{p}^{0}=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

where $\alpha_{i}=\left\langle\mathbf{p}^{0}, \mathbf{v}_{i}\right\rangle$ and $\alpha_{1}^{2}+\cdots+\alpha_{n}^{2}=1$.
After one step of the random walk, the distribution becomes

$$
\mathbf{p}^{1}=\mathbf{p}^{0} A=\alpha_{1} \mathbf{v}_{1} A+\cdots+\alpha_{n} \mathbf{v}_{n} A=\alpha_{1} \lambda_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \lambda_{n} \mathbf{v}_{n}
$$

and after t steps

$$
\begin{equation*}
\mathbf{p}^{t}=\mathbf{p}^{0} A^{t}=\alpha_{1} \lambda_{1}^{t} \mathbf{v}_{1}+\cdots+\alpha_{n} \lambda_{n}^{t} \mathbf{v}_{n} \tag{2}
\end{equation*}
$$

Let's think of what happens when t becomes large. We will assume the values α_{i} are nonzero since the initial position of the particle can be arbitrary. ${ }^{1}$ Eventually the right hand side of the expression will be dominated by the term in which λ_{i} has largest absolute value; this is either $\left|\lambda_{1}\right|$ or $\left|\lambda_{n}\right|$. This absolute value cannot exceed 1 , because \mathbf{p}^{t} would then become very large, but its norm is bounded since it is a probability distribution. Similarly, the absolute value cannot be less than 1 because then \mathbf{p}^{t} would become very small when t gets large. Finally, the largest λ_{i} in absolute value cannot be -1 , because \mathbf{p}^{t} would then eventually be shifting signs; since it is a vector of probabilities, its entries must always be nonnegative.

Therefore, it must be the case that $\lambda_{1}=1$, and

$$
\max \left\{\left|\lambda_{i}\right|: 2 \leq i \leq n\right\}=\max \left(\lambda_{2},-\lambda_{n}\right) \leq 1 .
$$

The quantity on the left side is denoted by $\lambda=\lambda(G)$ and plays a very important role. Because $\mathbf{u} A=\lambda_{1} \mathbf{u}$, so the eigenvector \mathbf{v}_{1} associated to $\lambda_{1}=1$ equals $\sqrt{n} \cdot \mathbf{u}$. Now from (2) we have that

$$
\left\|\mathbf{p}^{t}-\alpha_{1} \mathbf{v}_{1}\right\|^{2}=\alpha_{2}^{2} \lambda_{2}^{2 t}+\cdots+\alpha_{n}^{2} \lambda_{n}^{2 t} \leq \lambda^{2 t} .
$$

The left hand side has a natural interpretation. Recall that $\alpha_{1}=\left\langle\mathbf{p}^{0}, \mathbf{v}_{1}\right\rangle=1 / \sqrt{n}$, so $\alpha_{1} \mathbf{v}_{1}$ equals the uniform distribution \mathbf{u}. Thus λ^{t} measures how close \mathbf{p}^{t} gets to the uniform distribution after t steps of the walk:

$$
\begin{equation*}
\left\|\mathbf{p}^{t}-\mathbf{u}\right\| \leq \lambda^{t} \tag{3}
\end{equation*}
$$

Another way of saying this is that λ determines the rate at which \mathbf{p}^{t} converges to the uniform distribution: The smaller λ is, the faster we will get to a uniformly random vertex.

2 Expander graphs

To get some intuition about equation (3), notice that in t steps the particle can reach at most $1+(d-1)+\cdots+(d-1)^{t} \leq(d-1)^{t+1}$ vertices of the graph. This value is attained when the t-neighborhood of s is a d-regular tree. Let t be the largest value for which $(d-1)^{t+1}$ is at most $n / 2$. Then at least half the entries of \mathbf{p}^{t} are zero and

$$
\lambda^{t} \geq\left\|\mathbf{p}^{t}-\mathbf{u}\right\| \geq\left(n / 2 \cdot(0-1 / n)^{2}\right)^{1 / 2}=\frac{1}{\sqrt{2 n}} \geq \frac{1}{\sqrt{2(d-1)^{t+2}}}
$$

from where $\lambda \geq(1 / \sqrt{d-1}) \cdot\left(2(d-1)^{2}\right)^{-1 / 2 t}$. As n gets larger, the second term approaches 1 and λ must be at least as large as $1 / \sqrt{d-1}$.

A more precise analysis shows that for every graph, $\lambda \geq 2 \sqrt{d-1} / d-o_{n}(1)$, where $o_{n}(1)$ is quantity that converges to zero as n gets large. There exist graphs such that $\lambda=2 \sqrt{d-1} / d$ for infinitely many values of n. Such graphs are called Ramanujan graphs. ${ }^{2}$

[^0]For our purposes, it will be enough to consider graph families for which as n grows, λ stays bounded away from one. If this is the case, then after only $t=\Theta(\log n)$ steps of the random walk, we have that

$$
\begin{equation*}
\left\|\mathbf{p}^{t}-\mathbf{u}\right\| \leq \lambda^{\Theta(\log n)}=n^{-\Theta(1)} \tag{4}
\end{equation*}
$$

so \mathbf{p}^{t} gets very close to the uniform distribution, and in fact all vertices of G are reached with probability $1 / n \pm o(1 / n)$ for the correct choice of $\Theta(\cdot)$ constant.
Definition 3. A family of graphs $\left\{G_{n}\right\}$, where G_{n} has n vertices and is d-regular, is called an expander family if there is a constant $\epsilon>0$ such that $\lambda\left(G_{n}\right) \leq 1-\epsilon$ for every sufficiently large n.

3 Edge expansion

Suppose you start at a random vertex of some set S that is not too large and you take a random edge out of this vertex. How likely are you to get out of S ? If a random walk out of any vertex s approaches the uniform distribution quickly, we would expect such a walk to avoid "getting stuck" in any set S. The following claim makes this intuition precise. The probability is taken over a pair of endpoints (u, w) of a random directed edge of G.
Theorem 4. For every set S of vertices,

$$
\operatorname{Pr}_{(u, w)}[u \in S \text { and } w \notin S] \geq\left(1-\lambda_{2}\right) \operatorname{Pr}_{u}[u \in S] \operatorname{Pr}_{w}[w \notin S] .
$$

To prove this theorem it is useful to describe the eigenvalues of A, the normalized adjacency matrix of G, in an alternative way. We look at the value of the expression $\mathbf{v} A \mathbf{v}^{\mathrm{T}}$ as \mathbf{v} ranges over all vectors of norm 1 . We expand \mathbf{v} in the basis of eigenvectors

$$
\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

where $\alpha_{1}^{2}+\cdots+\alpha_{n}^{2}=1$. Then

$$
\mathbf{v} A \mathbf{v}^{\mathrm{T}}=\left(\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i}\right) A\left(\sum_{j=1}^{n} \alpha_{j} \mathbf{v}_{j}\right)=\sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} \cdot \mathbf{v}_{i} A \mathbf{v}_{j}^{\mathrm{T}} .
$$

Since $\mathbf{v}_{i} A \mathbf{v}_{j}^{\mathrm{T}}=\lambda_{i} \mathbf{v}_{i} \mathbf{v}_{j}^{\mathrm{T}}=\lambda_{i}\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle$ takes value λ_{i} when $i=j$ and zero otherwise, we get

$$
\mathbf{v} A \mathbf{v}^{\mathrm{T}}=\alpha_{1}^{2} \lambda_{1}+\alpha_{2}^{2} \lambda_{2}+\cdots+\alpha_{n}^{2} \lambda_{n}
$$

It follows that $\mathbf{v} A \mathbf{v}^{\mathrm{T}}$ can be at most λ_{1} and this value is attained when $\alpha_{1}=1$, namely when $\mathbf{v}=\mathbf{v}_{1}$. So we can describe λ_{1} as

$$
\lambda_{1}=\max _{\|\mathbf{v}\|=1} \mathbf{v} A \mathbf{v}^{\mathrm{T}} .
$$

Similarly, we can describe λ_{2} as the maximum of $\mathbf{v} A \mathbf{v}^{\mathrm{T}}$ but taken only over those \mathbf{v} for which $\alpha_{1}=0$, namely those \mathbf{v} that are perpendicular to \mathbf{v}_{1}. In our case \mathbf{v}_{1} is parallel to \mathbf{u} so we can write

$$
\lambda_{2}=\max _{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{u}} \mathbf{v} A \mathbf{v}^{\mathrm{T}}
$$

We will now give a probabilistic interpretation to the quantity $1-\lambda_{2}$. Fix \mathbf{v} such that $\|\mathbf{v}\|=1$ and notice that

$$
\sum_{u, w=1}^{n} A_{u w}(\mathbf{v}(u)-\mathbf{v}(w))^{2}=\sum_{u, w=1}^{n} A_{u w} \mathbf{v}(u)^{2}+\sum_{u, w=1}^{n} A_{u w} \mathbf{v}(w)^{2}-2 \sum_{u, w=1}^{n} A_{u w} \mathbf{v}(u) \mathbf{v}(w) .
$$

Since each row and each column of A adds up to one, each of the first two sums equals the sum of squares of the entries of \mathbf{v}, which is 1 . The third sum equals $\mathbf{v} A \mathbf{v}^{\mathrm{T}}$. Therefore we can write

$$
1-\lambda_{2}=\frac{1}{2} \min _{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{u}} \sum_{u, v=1}^{n} A_{u w}(\mathbf{v}(u)-\mathbf{v}(w))^{2}=\frac{1}{2} \min _{\mathbf{v} \perp \mathbf{u}} \frac{\sum_{u, v=1}^{n} A_{u w}(\mathbf{v}(u)-\mathbf{v}(w))^{2}}{\sum_{u=1}^{n} \mathbf{v}(u)^{2}}
$$

Since there are $d n$ directed edges of G, we get that $\sum A_{u w}(\mathbf{v}(u)-\mathbf{v}(w))^{2}=n \mathrm{E}_{(u, w)}\left[(\mathbf{v}(u)-\mathbf{v}(w))^{2}\right]$. We also have $\sum \mathbf{v}(u)^{2}=n \mathrm{E}_{u}\left[\mathbf{v}(u)^{2}\right]$. Therefore

$$
\begin{equation*}
1-\lambda_{2}=\frac{1}{2} \min _{\mathbf{v} \perp \mathbf{u}} \frac{\mathrm{E}_{(u, w)}\left[(\mathbf{v}(u)-\mathbf{v}(w))^{2}\right]}{\mathrm{E}_{u}\left[\mathbf{v}(u)^{2}\right]} \tag{5}
\end{equation*}
$$

Proof of Theorem 4. Let S be any set of vertices, $\alpha=\operatorname{Pr}[u \in S]=|S| / n$ and set

$$
\mathbf{v}(u)= \begin{cases}1-\alpha, & \text { if } u \in S \\ -\alpha, & \text { if } u \notin S\end{cases}
$$

Notice that $\mathbf{v} \perp \mathbf{u}$, and that $(\mathbf{v}(u)-\mathbf{v}(w))^{2}$ is 1 when exactly one of u and w is in S and the other is in \bar{S}, and 0 otherwise. In the first case we will say (u, w) crosses (S, \bar{S}). Plugging into (5) we obtain

$$
1-\lambda_{2} \leq \frac{1}{2} \frac{\operatorname{Pr}_{(u, w)}[(u, w) \text { crosses }(S, \bar{S})]}{\mathrm{E}_{u}\left[\mathbf{v}(u)^{2}\right]}
$$

where

$$
\operatorname{Pr}_{(u, w)}[(u, w) \text { crosses }(S, \bar{S})]=2 \operatorname{Pr}[u \in S \text { and } w \notin S]
$$

and

$$
\mathrm{E}_{u}[\mathbf{v}(u)]^{2}=\alpha(1-\alpha)^{2}+(1-\alpha) \alpha^{2}=\alpha(1-\alpha)=\operatorname{Pr}[u \in S] \operatorname{Pr}[w \notin S] .
$$

4 Proof of Theorem 2

We now show how to deduce Theorem 2 from Theorem 1. Let Φ be a 2CSP with no restrictions on the number of occurrences of each variable. We show how to get a new instance Φ^{\prime} out of Φ where every variable occurs at most d times.
Each variable x_{i} in Φ gives rise to n_{i} variables $x_{i 1}^{\prime}, \ldots, x_{i n_{i}}^{\prime}$ in Φ^{\prime}. For each constraint $\phi_{i i^{\prime}}\left(x_{i}, x_{i^{\prime}}\right)$ in Φ we assign unique copies $x_{i j}^{\prime}, x_{i^{\prime} j^{\prime}}^{\prime}$ in Φ^{\prime} and add $d / 2$ copies of the constraint $\phi_{i i^{\prime}}\left(x_{i j}^{\prime}, x_{i^{\prime} j^{\prime}}^{\prime}\right)$ in Φ^{\prime}. Finally, for every i we fix a $d / 2$-regular graph G_{i} on n_{i} vertices with edge expansion $\lambda\left(G_{i}\right) \geq 1 / 2$ and introduce equality constraints $x_{i j}^{\prime}=x_{i j^{\prime}}^{\prime}$ for every edge $\left(i, i^{\prime}\right)$ of G_{i}. We will call these the equality constraints for i. We will talk about how to construct such an expander in the next two lectures.

If Φ has $m / 2$ constraints, then Φ^{\prime} will have m variables and $d m$ constraints. If Φ is satisfiable, then Φ^{\prime} is clearly satisfiable. Now suppose we could find an assignment x^{\prime} that satisfies a $1-\varepsilon$ fraction of the constraints of Φ^{\prime}. Then the following claim allows us to convert x^{\prime} into an assignment that satisfies a $1-18 \varepsilon$ fraction of the constraints of Φ :

Claim 5. If some assignment x^{\prime} the violates at most an ε-fraction of contraints in Φ^{\prime}, then the assignment x where

$$
x_{i}=\text { plurality (most frequent) value among } x_{i 1}^{\prime}, \ldots, x_{i n_{i}}^{\prime}
$$

violates at most a 34ε fraction of constraints in Φ.
By Theorem 4, within every graph G_{i}

$$
|E(S, \bar{S})| \geq \frac{d|S||\bar{S}|}{4 n_{i}}
$$

for every subset S of vertices in G_{i}, where $E(S, \bar{S})$ is the number of edges from a vertex in S to a vertex outside S.

Let S_{i} be the set of variables $x_{i j}^{\prime}$ that agree with the plurality value x_{i}. Let ε_{i} be the fraction of the $d n_{i} / 4$ equality constraints for i violated by the assignment x^{\prime}. We will argue that $\left|\overline{S_{i}}\right| \leq 8 \varepsilon_{i} n_{i}$:

- If $\left|S_{i}\right|>n_{i} / 2$, then $\left|E\left(S_{i}, \bar{S}_{i}\right)\right| \geq d\left|\bar{S}_{i}\right| / 8$. Since all the equality constraints for i between S_{i} and \bar{S}_{i} are violated by $x^{\prime}, \varepsilon_{i}\left(d n_{i} / 4\right) \geq\left|E\left(S_{i}, \bar{S}_{i}\right)\right|$, so $\left|\overline{S_{i}}\right| \leq 2 \varepsilon_{i} n_{i}$.
- If $n_{i} / 4 \leq\left|S_{i}\right| \leq n_{i} / 2$, then $\left|E\left(S_{i}, \bar{S}_{i}\right)\right| \geq d\left|S_{i}\right| / 8 \geq d n_{i} / 32$. Since all the equality constraints for i between S_{i} and \bar{S}_{i} are violated by x^{\prime}, it follows that $\varepsilon_{i} \geq 1 / 8$, so $\left|\overline{S_{i}}\right| \leq n_{i} \leq 8 \varepsilon_{i} n_{i}$.
- If $\left|S_{i}\right|<n_{i} / 4$, then no value in Σ is taken by more than a $1 / 4$-fraction of the $x_{i j}^{\prime} \mathrm{s}$, so there must exist some subset of values $\Sigma^{\prime} \subseteq \Sigma$ so the number of $x_{i j}^{\prime}$ taking values in Σ^{\prime} is between $n_{i} / 4$ and $n_{i} / 2$. Just like in the previous case, we get $\left|\overline{S_{i}}\right| \leq n_{i} \leq 8 \varepsilon_{i} n_{i}$.

Now consider what happens in Φ^{\prime} when we replace the assignment x^{\prime} with the plurality assignment $x_{\text {plur } i j}^{\prime}=x_{i}$ for every j. Replacing x^{\prime} by $x_{\text {plur }}^{\prime}$ may cause the violation of at most ($\left.d / 2\right)\left|\overline{S_{i}}\right|$ nonequality constraints for every i. If x^{\prime} violates $\varepsilon d m$ constraints, $x_{\text {plur }}^{\prime}$ will then violate at most

$$
\varepsilon d m+\sum_{i=1}^{n}(d / 2)\left|\overline{S_{i}}\right| \leq \varepsilon d m+\sum_{i=1}^{n}(d / 2)\left(8 \varepsilon_{i} n_{i}\right)=\varepsilon d m+16 \sum_{i=1}^{n} \varepsilon_{i} d n_{i} / 4 \leq 17 \varepsilon d m
$$

constraints of Φ^{\prime}. This is a 17ε-fraction of all the constraints in Φ^{\prime}. Since exactly half the constraints in Φ^{\prime} are equality constraints, x cannot violate more than a 34ε fraction of constraints in Φ.

[^0]: ${ }^{1}$ This is not quite right: The correct way to say it is that for every index i there exists an initial position for the particle that makes $\alpha_{i} \neq 0$.
 ${ }^{2}$ Ramanujan graphs are known to exist for every d such that $d+1$ is a power of a prime larger than two.

